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A memory is a physical system for transferring information from one moment 
in time to another, where that information concerns something external to the 
system itself. This paper argues on information-theoretic and statistical mechan- 
ical grounds that useful memories must be of one of two types, exemplified 
by memory in abstract computer programs and by memory in photographs. 
Photograph-type memories work by exploiting a collapse of state space flow to 
an attractor state. (This attractor state is the "initialized" state of the memory.) 
The central assumption of the theory of reversible computation tells us that in 
any such collapsing, regardless of whether the collapsing proceeds from the past 
to the future or vice versa, the collapsing must increase the entropy of the system. 
In concert with the second law, this establishes the logical necessity of the empir- 
ical observation that photograph-type memories are temporally asymmetric (they 
can tell us about the past but not about the future). Under the assumption that 
human memory is a photograph-type memory, this result also explains why we 
humans can remember only our past and not our future. In contrast to photo- 
graph-type memories, computer-type memories do not require any initialization, 
and therefore are not directly affected by the second law. As a result, computer 
memories can be of the future as easily as of the past, even if the program running 
on the computer is logically irreversible. This is entirely in accord with the well- 
known temporal reversibility of the process of computation. This paper ends by 
arguing that the asymmetry of the psychological arrow of time is a direct conse- 
quence of the asymmetry of human memory. With the rest of this paper, this 
explains, explicitly and rigorously, why the psychological and thermodynamic 
arrows of time are correlated with one another. 
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these studies take it as given that the psychological arrow of time derives 
from the thermodynamic arrow of time (i.e., from the second law of thermo- 
dynamics). Yet until now no mathematical proof of this connection has been 
offered. This has allowed some to even go so far as to make the claim that 
the two arrows of time are not related at all (Popper, 1965). 

Without reducing the psychological arrow of time to a mathematically 
well defined phenomenon, there is no way to rigorously prove a relation 
between the psychological arrow of time and the thermodynamic one. In 
this paper, the "mathematically well-defined phenomenon" is taken to be 
the human ability to remember the past but not the future. 

This paper is primarily an analysis of memory systems and their rela- 
tionship with the second law. This analysis shows that the asymmetry of 
human memory is a direct reflection of the asymmetry of the second law. 
The implication is that if the second law "went the other way," then we 
would remember the future, not the past, and the psychological arrow would 
point toward the past, not the future. 

Memory 

Before presenting an outline of this paper, it will help to present an 
informal summary of what is meant by "memory".  For the purposes of this 
paper, a memory system is any physical system whose state at the present 
time to can be proven to provide information concerning the state of the 
world external to the memory system at a time t~ # to. Intuitively, a memory 
system is a means of ferrying information from one moment in time to 
another. Perhaps the simplest example of a memory system is a photograph 
on a piece of film. The film is the memory system. Its current state at to (i.e., 
the image on the film) provides "information concerning the state of the 
world external to the memory system at a time tl # to". Although this par- 
ticular example of a photograph is asymmetric in time (to> t~), in general 
no a priori temporal asymmetry is assumed: t~ can either precede to or come 
after it. 

More formally, let S be the space of a memory system and let W be the 
state space of the world external to S. We are given some information about 
the current state of the memory. For example, this information could be an 
exact specification of the current value of S: S(t0) =So, where to is the present. 
In general, we might also be given some extra information J which does not 
directly concern S(to). A memory system is used by taking the value of So 
together with J and then inferring something about the state of W at some 
time tj r to. The only inference tools at our disposal are the laws of physics 
and, if needed, the information theory principle of entropy maximization 
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(MaxEnt) (Jaynes, 1957a,b, 1982; Smith and Erickson, 1989; Skilling, 
1989a,b). In terms of probability distributions, a memory system is a system 
designed so that J, the fact that P,o(s~S)=O for S~So, and Hamiltonian 
dynamics, used together (along with MaxEnt, if need be), result in a non- 
uniform distribution P,, (W). 

Intuitively, a memory system will work if we can conclude from J and 
so that there is an interaction between S and W at some time between to and 
tl which serves to correlate Pro(S) and P,,(W). Colloquially, So is the 
"memory" of {the state of W at h}, and the memory was "stored" in S 
during the interaction between S and W. The sharper the constraints imposed 
by so on W(tl), the sharper the memory. 

Note that it is not enough that Pro(S) and Pt,(W) happen to be corre- 
lated to say that "Pro(S) serves as a memory of the state of W at h". In 
addition, we require that correlation itself is deducible, from Pro(S) and J. 
The reason for this is that even if P,,(W) and Pro(S) are perfectly correlated, 
if the user of the memory cannot deduce this correlation, then the memory 
system S does not convey any useful (to the user of the memory) information 
from another time to the present. 

Also note the implied existence of an observer in all of this. Someone is 
doing the remembering, i.e., someone is observing P,o(S) and J and thereby 
inferring something concerning W at h. This observer need not be all- 
knowing. For example, in general the observer will only have access to some 
of the degrees of freedom of S. Of course, only those degrees of freedom 
which are observed can be used to remember something concerning W at h. 

We have four distributions involved in memory: Pro(S), Pro(W), 
P,,(S), and Pr,(W). The distribution P,,(W) is what we (i.e., the observer) 
wish to deduce. Therefore two of the distributions are possible sources of 
J: Pr0(W) and Pr,(S). As it turns out, both of these distributions can help 
constrain W( h). 

Useful memory systems which exploit information about P,0(W) are 
invariably of the form which will be designated as c-type memory systems. 
These systems work by evolving the joint system S • W through time from 
to to t~. For example, if Pro(W) specified exactly the phase space position at 
to of the outside world, and if Pro(S) does the same for the memory system, 
then we can deterministically evolve the joint system through time to deter- 
mine the exact state of W at time tl. To agree with the colloquial use of the 
term "memory," for these types of systems we usually require that the 
deduced state W(h) varies with the value of So. (Otherwise, J =  W(to) fully 
specifies W(h), and the memory system S is superfluous.) 

As will be seen, "memory" as it occurs in computer programs is a c-type 
memory system. Furthermore, c-type memory is symmetric in time; it can 
be used to "remember" the future as well as the past. The time symmetry 
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of such a memory is in accord with the well-known fact (Bennett, 1982, 
1988; Landauer, 1961, 1985; Fredkin and Toffoli, 1982) that computers, 
unlike the human brain, can be run in a completely time-reversible fashion. 
The primary drawback of c-type memory systems is that they require W to 
be small enough and well-ordered enough so that it is feasible both to have 
Pro(W) sharply peaked and to evolve the joint system S x W. This drawback 
becomes particularly pronounced when W is the entire physical universe; 
few (if any) naturally occurring memory systems are c-type. 

Besides P,0(W), the other possible source of J is P,,(S). Useful memory 
systems which exploit PtI(S) are invariably of the form which will be desig- 
nated as p-type memory systems. Because they are privy only to the states 
of S, p-type memory systems cannot work like c-type memory systems by 
deterministic evolution of the joint system S x W. To see how a p-type 
memory system can work, imagine that P,,(S) specifies exactly the phase 
space position at tl of the memory system, and that P,0(S) does the same 
for the time to. For such a situation we can start with Pt,(S) and calculate 
the state s~ which the memory system should be in at time to if there is no 
interaction between S and W during the interval between to and tl. If, 
however, s~ ~So, the provided value of S(to), then we know that there must 
be an interaction between S and W at some time between to and ft. For the 
cases where there is such an interaction, the resultant perturbation from s~ 
to So is strongly dependent on the state of W at ft. In fact, we can explicitly 
calculate what states of W at time t~ are consistent with the information that 
S(to)=So and S(tO=Sl. In this way, knowledge of P,,(S) together with 
P,o(S) can set constraints on W(fi). 

As will be seen, "memory" as it occurs in photographs is a p-type 
memory system. Moreover, as is discussed later, all current evidence indi- 
cates that human memory is p-type as well. 

The c-type memory systems can acquire the additional information they 
require (beyond that contained in Pro(S)) simply by expanding the scope of 
what is observed at the present, to. (Instead of just looking at the present 
state of S, it suffices if they also look at the present state of W.) This is not 
true for p-type memory systems, because the extra information p-type 
memory systems require exists at a different time, h.  How can one acquire 
this extra information from the time t~ when one is (by definition) stuck in 
the present, to? The details of the answer to this question are quite complex, 
but one rather obvious point can be made: the acquiring of the needed extra 
information is made extraordinarily easier if a state-space collapsing process 
operates in S, taking a multitude of states at the time t2 to a single state at 
time ft. (t2 is shortly before (after) t~ if tl comes before (after) to. For 
example, if t~ < to, the collapsing process is a many-to-one mapping starting 
with a multitude of possible S states before t~ and ending at fi, with S=s, .) 
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Given the existence of such a collapsing process, we only have to directly 
infer that the memory system is in one of the multitude of states at t2, rather 
than that it is exactly in the single state at t~. 

The preceding argument is only intended to indicate the reasonableness 
of requiring that p-type memory systems involve state-space collapsing pro- 
cesses, a more detailed exposition indicating the necessity of such collapsing 
processes in p-type memory systems is presented below. Given a p-type 
memory system with such a collapsing process, it is illuminating to invoke 
the central assumption of the theory of reversible computation; any state- 
space collapsing process, whether it goes from the past to the future or vice 
versa, must have higher entropy on the collapsed side of the mapping. (This 
assumption, hereafter abbreviated as "the central assumption", is taken for 
granted by Bennett (1982, 1988). Landauer (1961, 1985), and Fredkin and 
Toffoli (1982), and is rigorously analyzed by Wolpert (1990).) Together with 
the second law, this assumption tells us that t2 must be shortly before tl, 
not shortly after it. This in turn means that t~ precedes to, and therefore that 
all p-type memory systems can only be of the past. 

In this temporal asymmetry of theirs, p-type memory systems contrast 
markedly with c-type memory systems, which do not require state-space 
collapsing processes. This asymmetry of p-type memory systems is caused 
directly by the second law--without this law, p-type systems could remember 
the future as easily as the past. Under the working assumption that human 
memory is p-type, this constitutes (the outline of) a proof of why the psycho- 
logical and thermodynamic arrows of time are correlated. 

In addition to memory systems having J =  P,,(S) and memory systems 
having J =  P,0(W), it is theoretically possible to have hybrid systems, in 
which J gives information about both S(tO and W(to). It appears that in 
practice, however, there exist few (if any) memory systems which exploit 
such a hybrid J. Accordingly, such hybrid memory systems are not con- 
sidered in this paper. 

As another variation, it is possible that J is independent of both 
P,,(S) and Pro(W). This is the case, for example, if J is empty, or if it 
contains prior knowledge not contained in P,,(S) or P,0(W). (An example 
of such prior knowledge is the following information: In N randomly chosen 
experiments where S(to) equalled the value So, the value of W(t~) was always 
w~ .) Such memory systems are called b-type memory systems. They are 
usually not very useful, for reasons that are discussed in Appendix A. More- 
over, in the case where J involves prior knowledge, analysis of b-type 
memory systems implicitly extends far beyond analysis of the physics of 
Hamiltonian evolution in S • W combined with the principle of MaxEnt. 
An analysis of such b-type memory systems would also necessitate 
investigating how the prior knowledge can be acquired, how reliable it is, 
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how applicable it is, etc. For these reasons, b-type memory systems will not 
be considered in this (already lengthy) paper in any depth. 

Finally, there might be circumstances in wl~ich one is interested in using 
P,o(S) and J to infer something other than P,'~(W). For example, one might 
have some reason to want to infer P,0(W) rather than observe it directly. 
Some such cases are discussed in passing in this paper. The primary goal of 
this paper, however, is to investigate systems for inferring P,,(W). 

Outline 

This paper is organized as follows. Memory systems which exploit 
P,0(W) in addition to Pto(S) are investigated in Section 1. In particular, it 
is argued there that all useful memory systems of this sort must obey (1.1). 
the formal definition of c-type memory systems presented in Section 1. 

Memory systems which exploit P,,(S) in addition to Pro(S) are investi- 
gated in Section 2. In particular, it is argued there that all useful memory 
systems of this sort must obey (2.1), the formal definition of p-type memory 
systems presented in Section 2. Section 2 goes on to discuss in detail the 
important fact that p-type memory systems (unlike c-type memory systems) 
explicitly rely on the existence of a process directing state-space flow to an 
attractor state, the state of the memory system when it is "initialized." 

Like (1.1), the definition (2.1) is temporally symmetric. (In particular, 
the state-space flow is allowed to collapse in going from the future into the 
past as well as vice versa.) The overt temporal symmetry of  (2.1) ensures 
that any explanation of the asymmetry of real-world p-type memory (and 
hence of the psychological arrow of time) does not arise through asymmetric 
definitions. 

It is only with symmetric definitions that we can rigorously resolve the 
following paradox: The future is both the temporal direction into which 
"information is dissipated" (due to the second law) and the direction into 
which "information can be preserved" (via p-type memory). 

Section 3 of this paper is intended to provide the reader with an intuitive 
understanding of the material in Section 2. This section is made up of a 
series of examples of how the p-type memory systems found in nature (e.g., 
craters on the moon, a footprint on a beach, a photograph) meet the defini- 
tion given in (2.1). In particular, Section 3 argues on commonsense grounds 
(as opposed to on the formal grounds of Section 2 and Wolpert (1990)) that 
the asymmetry of the second law induces an asymmetry in the allowed 
initialization processes of p-type memory systems. In fact, initialization in 
such systems seems to always exploit the second law. 

Section 4 concludes this paper by arguing in detail that the asymmetry 
of human memory is the sole cause of the psychological arrow. Since the 
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psychological arrow is an ill-defined phenomenon (at least until it is reduced 
to something mathematically precise, like memory),  this section is necessarily 
somewhat philosophical in nature. 2 

The work presented in this paper  can be viewed in two ways. First and 
most  naturally, it can be viewed as an extension of  the work of Jaynes and 
many others (Jaynes, 1957a,b, 1982; Smith and Erickson, 1989; Skilling~ 
1989a,b) on applying the ideas of  information and probabili ty theory to 
physical systems) Alternatively, this paper  can be viewed as related to the 
work of  Bennett and others (Bennett, 1982, 1988; Landauer,  1961, 1985; 
Fredkin and Toffoli, 1982) investigating Maxwell 's demon and the thermo- 
dynamic behavior of  computing devices. The main differences are (1) the 
work presented in this paper  is completely formal in its treatment of  memory  
and has a correspondingly wider scope than the preceding work, extending 
the concept of  memory  beyond computing devices, (2) this paper shows that 
running an irreversible computer  program does not necessitate an asym- 
metric computer  program memory,  (3) the analysis of  this paper shows 
explicitly that computer  program memory  and human memory  are of  a 
fundamentally different nature, and shows that these are the only two kinds 
of  useful memory,  and (4) this paper  investigates the implications of  the 
analysis of  p-type memory  systems for the psychological arrow of time. 

All of  the arguments of  this paper  are presented in a classical context. 
Similar arguments hold for quantum systems. There is considerable variation 
in the degree of  formal rigor in the arguments presented in this paper;  the 
less rigorous arguments should be viewed more as an initial foray into a 
subtle subject than as a conclusive treatment of  a fully understood issue. 

1. c-TYPE M E M O R Y  SYSTEMS 

This section investigates memory  systems which rely on P,0(W). First, 
this section examines a real-world example of  such a memory  system. Then 
this example is generalized to give (1.1), the definition of  c-type memory  
systems. After this, the question of how memory  systems which rely on 

2For those who are not convinced by the arguments of this section, this paper does not explain 
the psychological arrow in its entirety as a consequence of the thermodynamic arrow. Rather, 
such people should view this paper as establishing the relation between the thermodynamic 
arrow of time and a subset of the psychological arrow of time, namely that part of the 
psychological arrow bound up in the asymmetry of human memory. 

3There are a number of interesting philosophical aspects of Jaynes' principle "choose the p 
which maximizes the entropy, subject to the known constraints." For example, this principle 
says that what constraints are known to the researcher modify the physics (e.g., the entropy) 
of the system, even if the researcher never physically contacts the system. Just as in quantum 
mechanics, in statistical mechanics the observer affects the physics of the system of necessity. 
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P,o(W) can work is investigated from an information-theoretic and statistical 
mechanical point of view. This investigation indicates that all such memory 
systems must obey (1.1). Finally, this section ends by discussing the time- 
symmetry characteristics of c-type memory systems as well as the limitations 
which exist on using such systems in the real world. (It is these limitations 
which preclude c-type memory systems from being candidates for how 
human memory works.) 

1.1. Memory in a Computer 

In this subsection we investigate an example of a memory system which 
exploits P,0( W): abstract memory in abstract computers. We deal with 
"abstract" memory and computers so as to keep the conversation general, 
i.e., so as to avoid issues concerning particular hardware implementations 
and so as to avoid issues concerning the physical world external to the 
computer. This means in particular that here, in this example, the dynamical 
laws with which we are directly concerned are those of the computer's pro- 
gramming language, not those of Hamiltonian physics. (It is implicitly 
assumed, however, that the programming language can be implemented in 
the physical world, so that its dynamics can be expressed in terms of Hamil- 
tonian dynamics if so desired.) 

The discussion in this subsection is intended to be pedagogical. Accord- 
ingly, there is no reason to be so formal as to consider (for example) Turing 
machines; anyone who has ever written a computer program should be able 
to follow the analysis presented here. Although in the next subsection this 
analysis will be generalized into a time-symmetric form, the discussion in 
the current subsection largely concerns computer memory as we humans 
usually think of it, i.e., computer memory of the past. 

In that it is pedagogical, this subsection implicitly assumes one particu- 
lar colloquial meaning for the word "memory" when it is applied to 
(abstract) computer programs. Sociological questions of whether or not 
most researchers agree with this meaning are not relevant; the discussion is 
only intended as an illustration of memory systems relying on Pro(W). 

Consider an abstract piece of Random Access Memory (RAM) being 
used in an abstract computer program. For simplicity, label the address of 
that piece of RAM as 0001. Assume that at time to there is a particular 
pattern So at address 0001. We say that "so is the state of 0001 at time t0." 
In what sense is So a memory of the state the outside world was in at some 
time before to? 

The "memory system" in this case is the RAM at 0001. The "outside 
world" is the rest of the abstract computer, including both the entire program 
code running on the computer, all of the computer's data-storing RAM 
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(outside of that at 0001, of course), all registers, the program counter, etc. 
Knowledge of the value so alone (!) tells us nothing about the state of 

this outside world, at any time. Therefore, by itself, 0001 does not constitute 
a useful memory system. To transfer data from one moment in time to 
another (i.e., to have the value of So tell us something concerning the state 
of the world external to 0001 at a time tr to), abstract computer program 
memories rely on the fact that it is possible to deterministically evolve the 
entire computer system, program, RAM, and all, through time. The memor- 
ies of such systems work if it is provable from the computer program that 
So, the current contents of 0001, is a reflection of some data which existed 
in a certain place in the computer in the past. In such a case So is a "memory" 
of that data from the past. 

As an example, consider the following code segment embedded in some 
larger program: 

SAVE_LOOP = LOOP; 
LOOP = 0; 

We say that {the state of SAVE_LOOP after this piece of code has 
executed} is a memory of {the state loop was in just before this code was 
executed}. The abstract piece of RAM containing SAVE_LOOP is the 
memory system. Everything else in the abstract computer is the outside 
world. In particular, the RAM containing LOOP is part of SAVE_LOOP's 
outside world�9 

Define to to be the moment this code segment has finished. Then 
SAVE_LOOP is a "memory of the state of LOOP at a time previous to to" 
in the sense that we can conclude that the value of the memory system 
containing SAVE_LOOP at time to tells us something about the state of that 
system's outside world (namely, the value of LOOP) at an earlier time. How 
do we reach this conclusion that before this code was executed LOOP had 
the value currently found in SAVE_LOOP? We reach it by logically back- 
tracking the entire computer program in conjunction with the memory 
containing SAVE_LOOP. 4 In other words, along with SAVE_LOOP we 
deterministically evolve all of SAVE_LOOP's outside world, including both 
the coding sections and the data sections of the program. 

We are not making any initialization assumptions. As a result, unless 
we use deterministic evolution to exploit knowledge of the code segment, we 

~q'he reasoning is as follows: At the beginning of the code segment SAVE LOOP is set to 
LOOP's value. Never again in the code segment is SAVE_LOOP touched. Therefore at the 
end of the code segment it contains the value that LOOP had at the beginning of it. 
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can conclude nothing from {the state of SAVE_LOOP after the piece of 
code has executed}�9 

Consider the following code segment: 

M = 3 ;  
LOOP = 0; 

10: L O O P = L O O P + l ;  
J = J + l ;  
if (J< 10) 

{goto 10; 
} 

�9 , �9 

We can say that the state of LOOP after the code has executed is a 
memory of the state of J before the code executed. Together with its external 
world (i.e., the code segment), the value of LOOP after the code segment 
has executed suffices to fix exactly the value of J just before the code segment 
has started. 

Note, however, that we do not say that the state of LOOP after the 
code is a memory of the state of M before the code, despite the fact that the 
state of LOOP after the code, together with the state of LOOP's outside 
world after the code, constitutes sufficient information to determine the state 
of M before the code. (M's state before the code is given directly by M's 
state after the code, which in turn is a subset of LOOP's outside world after 
the code.) Knowing the state of LOOP after the code adds nothing to our 
knowledge of the state of M before the code--knowledge of LOOP's outside 
world is both necessary and sufficient to reach conclusions about the state 
of M before the code. This is why we do not view LOOP after the code as 
a memory of M before it. Generically, we require that knowledge of S(to) 
must help us fix W(q) in order to say that the state S(to) is a memory 
of W(sj). 

1.2. c-Type Memory Systems 

Although the preceding example was presented as memory of the past, 
we can easily generalize from it to get a time-symmetric definition of memory 
systems which work via the same logical mechanism as memory in abstract 
computers�9 This generalization, (1.1), defines c-type memory systems. It is 
presented and discussed in this subsection. We can hypothesize that not only 
abstract computer memory systems, but in fact all memory system which 
exploit P,0(W) are necessarily c-type. Arguments establishing this hypothesis 
are presented in the subsection following this one�9 
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F r o m  now on the conversat ion moves f rom the abstract  to the concrete, 
i.e., f rom now on we are to think o f  the m e m o r y  system and the outside 
world  as real physical systems evolving according to Hamil tonian  dynamics.  
This is to allow us to apply statistical mechanics  later. 

(1.1) I f  a system S is in a state So at a time to, that  state is said to be a 
c-type memory, be it o f  the past  or o f  the future, and the system is said to 
be a c-type memory system i f :  

1. In addit ion to So, one also has some informat ion concerning the state 
o f  IV, the world external to S, at that  same time to. 

2. Using S(to)=So and the informat ion concerning W(to), it is possible 
to evolve the joint  system S x w through time to a time tl and come to a 
conclusion about  W(tO, the state o f  W a t  tl. 

3. With  the possible exception o f  the precise " informat ion  concerning 
W(t0)" provided,  noth ing  precludes the m e m o r y  system's being closed for  
the time period between to and t l ,  and noth ing  precludes the memory  sys- 
tem's  being open for that  time period. 

The rationale for requirement 3 is that  a priori we want  to allow both  
the possibility that  a memory  is stored in S and the possibility that  S is 
" empty , "  conta ining no m e m o r y  of  its external world. To  make  (1.1) more  
in accord with colloquial usage, one usually adds the following requirement 
to (1.1): 

4. Fo r  the provided informat ion concerning W(to), there must  exist 
changes to So which modify  the conclusion about  W( t0 ,  and similarly for 
the provided So there mus t  exist changes to the provided informat ion con-  
cerning W(to) which modify  the conclusion concerning W(tj). 

The rationale for this four th  requirement is that  if the conclusion does 
not  vary with the informat ion  concerning W(to), then we have a b-type 
memory.  On the other  hand,  if it does not  vary  with so, then our  "conclusion 
about  W(tO" follows f rom simply evolving W by itself th rough  time, and S 
adds noth ing  to our  knowledge 5. This dependence o f  our  "conclusion about  
W ( t 0 "  on So constitutes the memory.  

5Despite requirement 4, there is still a sense in which the semantics of (1.1) might conflict with 
colloquial use of the term "memory." This arises from the requirement, implicit to all memory 
systems investigated in this paper, that S is to serve not as a memory of itself, but only of the 
world outside of itself. (We try to infer P,,(W), not Pt~(S), from Pro(S).) The reason for this 
requirement is that we are implicitly viewing memory systems as devices which exploit whatever 
means they can to convey information from one moment to another. That is their purpose~ 
Now one couM try to deduct P,~(S) via P10(W) (for example). However, the easiest and most 
efficacious way to have a memory system remember its own past is simply to ensure it is always 
closed and then evolve it through time. For such a case no external world is necessary at all-- 
we are just evolving S. This is a trivial and uninteresting case, which is why it is excluded from 
the definitions in this paper. 
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Note that whether or not a given system is a c-type memory depends 
not only on that system itself, but also on the knowledge one is given 
concerning that system's outside world. For example, for some states W(to) 
is might follow from S(to)=So that an interaction between S and W occurs 
at some time between to and tj. In such a case, S(to) might tell us something 
about the state of W at times other than to, i.e., S(to) might be a memory 
of such a state. This will be true for, example, if S is the abstract RAM 
containing SAVE_LOOP and if the present is immediately after completion 
of the following code segment: 

SAVE_LOOP = LOOP; 
LOOP = 0; 
�9 . . 

As before, for the external world of {the RAM containing SAVE_LOOP}, 
that RAM serves as a memory system. 

For other states W(to), however, even for the same value So of S(to), we 
might be able to conclude that there is not an interaction between S and  W 
at some time between to and tl. In such a situation, S(to) will tell us nothing 
about the state of Wat  times other than to. In other words, for such a W(to), 
varying So will not change our conclusion concerning W(tO, and S(to) is not 
a memory of anything to do with W. This would be the case, for example, 
if S were still the abstract RAM containing SAVE_LOOP, but the entire 
abstract program is different and never touches that RAM containing 
SAVE_LOOP. For this external world, there is no interaction between S 
and W ever, we know this, and therefore S provides no memory of the state 
of W at anytime whatsoever. This relation between W(to) and the question 
of whether or not S is a c-type memory system is an important difference 
between such c-type memory systems and p-type memory systems�9 

Note that in their hardware implementation real-world computers might 
make use of processes which can be viewed as non-c-type memory systems, 
especially in their input-output devices. (In particular, they might exploit p- 
type memory systems--see Section 2 and the EEPROM example in Section 
3.) However, the means by which a typical program running on such a 
computer "remembers" from one moment in time to another is via c-type 
memory. This distinction, between the characteristics of the actual hardware 
implementation on a real-world computer and the theoretical requirements 
of that implementation, is analogous to the distinction between real-world 
computers which are all logically irreversible and the completely reversible 
manner in which one can design theoretical computers (Bennett, 1982, 1988; 
Landauer, 1961, 1985; Fredkin and Toffoli, 1982). 
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1.3. Why Memory Systems Which Exploit P,o(W) Are c-Type 

Using information theory and statistical mechanics, this subsection 
starts by presenting a rigorous and general formalism for investigating 
memory systems. This subsection then presents an argument that all physical 
memory systems relying on P~o(W) must meet the requirements of (l. 1). 

Let the space S be the state space of the memory system. Denote the 
phase space associated with the system by Vs. Often (especially ion the 
analysis of p-type memory systems) S will be a partition on this phase space, 
reflecting the fact that any real-world measuring device has finite precision. 
Let W be the state space of the universe external to the memory system. It, 
too, may or may not be a partition on its phase space. Denote the phase 
space associated with W by 1-'w. 6 We are provided with the probability 
distribution over S at to, P,o(S). We are trying to use P,o(S) to gain informa- 
tion concerning W(h), where t~ r to. We make no a priori assumptions con- 
cerning whether t~ < to or vise versa. 

Consider the space D=-Sx W• Sx W, representing S at to, Wat  to, S 
at h, and W at tl. If P(D) is the probability distribution over D, then, for 
example, S P(D) dW(to) dW(tl) dS(to) gives the probability distribution over 
S for the time tj. In the usual way, the principle of maximum uncertainty 
induces a probability distribution over D, namely the distribution of maxi- 
mum entropy subject to the dynamical laws relating (S x W) at to and 
(S • W) at fi, and subject to whatever external constraints apply (Jaynes, 
1957a,b, 1982; Smith and Erickson, 1989; Skilling, 1989a,b). 

We assume that other than (possible) interactions with each other and 
a means for imposing whatever external constraints apply, both S and W 
are closed systems. Information concerning P(S) and P(W) at to is the only 
external constraint that we have. Therefore P(D) is the distribution with 
maximal entropy such that (a) it obeys the constraints implicit in the dynam- 
ical laws relating (S• W) at to and (S• W) at t~, (b) its projection onto 
S(to) gives the provided distribution P~o(S), and (c) its projection onto W(to) 
gives the provided distribution Pt0(W). The projection of this maximal 
entropy distribution onto W(q) represents what we can infer about W(h), 
given only P(S) and P(W) at to. 

6In general, we allow almost any kind of external system to interact with S. Therefore, for 
example, we do not know even how many particles there are in the external system. Rather 
than work with a probability distribution over kinds of external systems (as well as over the 
phase space of  each such system), we require that W be big enough to encompass as a subset 
of  itself any kind of  external system with which the memory is likely to interact. Different 
kinds of external systems being in contact with S correspond to different subsets of  W, i.e., 
they correspond to different subregions of Fw. In this way we can restrict our probability 
distribution to a single phase space, Fw. 
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Some comments are in order. First note that it is not the entropy of  
P(D = S • W• S x W) which we want to maximize, but rather the entropy 
o f P ( F o )  = P( (Fs  x Fry)to • (Fs • Fw),,), the probability distribution over the 
product phase space associated with D. However in general, when (as in this 
paper) fine-graining is assumed, we cannot directly maximize the entropy 
over P(Fo).  To see this, write P(Fs • Fw) as P(Fs• w) for short.  Let 7 be 
any point which lies in the support of P(Fs• w) at tt. Now examine the line 
(7~(Fs•  w),,, xe(Fs• w),o) in the space FD traced out by fixing 7/and letting 
x vary. Since evolution through Fs • ~v is deterministic, 7 corresponds to a 
unique point in the support of  P(Fs• w) at to, 7'. Therefore P(FD) is zero 
everywhere along the line (7, x) except where x = y'. In other words, P(Fo)  
has the form of a delta function. 7 This means that the fine-grained entropy 
over the space Fo has the form 

- f d ( 7 , o )  d(7,)  { . . .  ~[Vt,- (I)(,,_t0)(7,o)]) 

x l n . . .  3[7,, - (I)(,,-to)(Y,o)]} ~ -In[0] = oo 

(7,, is the phase coordinate of  the distribution for time ti, and (I),(.) is the 
injective phase space evolution operator taking 7,, to 7(t,+ ~).) Therefore we 
cannot work directly with this entropy. 

To avoid these difficulties in calculating fine-grained entropies, it is 
conventional to exploit Liouvil!e's theorem, which tells us that the entropy 
of  P(Fs• W),o equals the entropy of  P(Fs• w),, and define the entropy of  
P(Fo)  as being the entropy of  either P(Fs• w),o or P(Fs• w)r, .8 It is this 
entropy which we maximize. 

7Another way of seeing this is to note that due to the injectivity of evolution in Fs• w, the 
support of P(Fo) has the same dimension as the support of P ( F s  • w), i.e., P(Fo) is nonzero 
only over a hypersurface through FD. This in turn means that along certain projections P(Fo) 
has the form of a delta function. 

8There is another possible way around the impasse that for any allowed system the fine-grained 
entropy over all Fo is infinite. This is to integrate p In p only over the hypersurface in Fo over 
which it is allowed to be nonzero. With this procedure, instead of evaluating a volume integral 
over a delta-function distribution, we evaluate a surface integral over an everywhere-finlte 
distribution. Presumably this procedure of extremizing fine-grained entropy over this hypersur- 
face in Fn is equivalent to the procedure of extremizing entropy over either (Fs~ re),0 or 
(Fs• w),,. If these two procedures turned out not to be equivalent, then unless there is some 
way to choose between them, the entire technique of MaxEnt as it applies to statistical mechan- 
ics would have a problem. To wit, should we maximize entropy over a single phase space at 
a single time, F,, as is conventional (Jaynes, 1957a, b, 1982; Smith and Erickson, 1989; Skilling, 
1989a, b), or should we maximize it over the allowed hypersurface in some product space 
n, {r,,}? 

As an aside, note that if coarse-graining were used, then in effect dissipation would be 
occurring within the partition elements of S and IV. We would no longer be evolving strictly 
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Second, note that the constraints under which we must calculate entropy 
are of  two types. The first is that of  following Hamiltonian evolution in 
Fs • Fw when going from to to tl. This constraint is simply a boundary on 
the region of  allowed states in the space (Fs • Fw),0 • (Fs x Fw),, .The second 
type of  constraint is an external constaint, like information concerning 
P,o(S). A particularly illuminating example of  this second type of  constraint 
is the situation in which we are given that P,o(S) equals zero for all S values 
except for one, or. In this case our external constraint is just like the con- 
straint of  Hamiltonian evolution; it, too, is simply a restriction of  the allowed 
states in FD to a certain subregion. The intersection of the two subregions 
associated with these two constraints gives the region Q in Fn over which 
we must maximize entropy. There is no other restriction on the probability 
distribution, which means that the entropy is maximized when the distribu- 
tion is flat across Q and zero elsewhere. (More precisely, given our modified 
definition of  entropy, we require that the distribution is fiat across either of  
the two projections of  Q onto (Fs x Fw)t0 or of  Q onto (Fs x Fw),, .) 

This full mathematical structure is necessary to carry out formal proofs 
(see for example Appendix B). Fortunately, one does not need to use the 
full structure to justify (1.1). To start, note that a priori, we do not know if 
there was an interaction between S and W in the time between to and h ,  
our knowledge of  P(S) at to, by itself, usually tells us little about W(tO. 
(Nonetheless, there are certain cases where it can be relatively informative. 
A discussion of  this special case of  so-called "b-type" memory systems can 
be found in Appendix A.) Therefore, in general, to infer a lot about P (W )  
at t~, we need some extra information besides P,o(S). For the rest of  this 
subsection, attention will be restricted to the case where our extra informa- 
tion concerns P (W)  at some moment other than t~. (The other case is dealt 
with in Sections 2 and 3.) 

Now we always can evolve W deterministically for those times it is not 
interacting with S. Therefore, information concerning P,(W) for any time t 
on the same temporal side as t~ of { W's interaction with S} is equivalent to 
information concerning P,t(W). Similarly, information concerning P,(W) 
for any time t on the same temporal side as to of  { W's interaction with S} 
is equivalent to information concerning P,0(W)- Therefore, without loss of 
generality, we can take " P ( W )  at some moment other than fi" to mean 
P,0(W). (Similarly, in Section 2 we will. take " P ( S )  at some moment other 
than to" to mean P,,(S).) This justifies requirement 1 of  (1.1). 

according to the Hamiltonian of S x W, and Liouville's theorem would not apply. However, 
now Liouville's theorem would not be needed, since P(F)o would not have the form of a delta 
function and its entropy would be well-defined. 
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We are given some information concerning Pt0(W) and P,o(S). There- 
fore we are given some information concerning Pro( V -  S • W). We are given 
no other information. To deduce P,o(V=S • W) exactly from our partial 
information concerning it, we use the principle of  entropy maximization. (It 
having been argued above that we should maximize the entropy of  P ( F z )  
rather than P(Fo).)  Hamiltonian dynamics then maps P,0(V= S x W) to a 
probability distribution over W(tl). This justifies the claim that memory 
systems which exploit information concerning P,0(W) of  necessity meet the 
second requirement of  (1.1). The third requirement of  (1.1) is axiomatic to 
all memory systems. The fourth requirement is really just a matter of  semant- 
ics, and was justified in the previous subsection. 9 Therefore we have justified 
in full our hypothesis that memory systems which exploit information 
concerning P,0(W) are of  necessity c-type. 

What properties should Pt0(W) have in order to result in a maximally 
efficacious memory? To answer this question, first assume for simplicity that 
our knowledge of  P,o(S) is that S is in the state cr at t = to. N o w  let x be 
either of  the two variable {S at t~} or { W at to}. It is proven in Appendix 

9There is a subtle issue concerning requirement 4 which is brought to the fore by the analysis of 
this subsection. To require that "for the provided information concerning W(to), the conclusion 
about W(tO must vary with So" formally means that making infinitesimal variations to 
P,o(S) while keeping P,o(W) unchanged results in changes to our deduced P,t(W) (similarly 
for the requirement that "for the provided So, the conclusion about W(tO must vary with 
varying the information concerning W(to).") There is no problem with this formalization of 
requirement 4 of (1.1) in the real world, since the microscopic laws of physics are reversible, 
and one can always evolve an3' probability distribution across V backward or forward in time 
with impunity. However, when we are operating in an "abstract world," as in Sections 1.1 
and !.2, it might be that changes to So without corresponding changes to W(to) result in a 
contradiction. Such will be the case if the "abstract world" is irreversible. For example, 
consider the code segment " . . . ,  SAVE__LOOP=LOOP; . . . .  " Let the memory system S be 
the abstract RAM housing SAVE_LOOP. Varying the state of {S after the code segment has 
executed} without also varying the state of { W after the code segment has executed} results 
in a contradiction, since with such a variation SAVE LOOP after the segment no longer 
equals LOOP after the segment, despite the fact that the program says that they were copied 
to be equal. For such situations, "for the provided information concerning W(to), the conclu- 
sion about W(t~) must vary with so" means that when infinitesimal variations to P,o(S) are 
made and Pro(W) is varied acco~'dingly, we get changes to our deduced P,,(W). Alternatively, 
one can just restrict consideration to abstract reoersible, digital, finite computers. For such 
computers, changes to So unaccompanied by changes to W(to) cannot result in a contradiction, 
and we do not need to require that "P,0(W) is oaried accordingly." To see why this is so, 
examine the mapping over the space of {all possible patterns in the data segment of memory} 
induced by a single step of a program running on such a reversible, digital, finite computer. 
Due to reversibility, the mapping must be injective. Due to the finiteness of the space of {all 
possible patterns in the data segment of memory}, it therefore follows that the mapping is 
surjective as well, i.e., the mapping must be bijective. Therefore, for these systems, any S and 
any Wcan be evolved together in any direction in time without getting a contradiction, so (in 
particular) so can be varied while W(to) is left unchanged. 
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B tha t  a necessa ry  c o n d i t i o n  for  P(x) to have  the  s t ronges t  poss ib le  effect 
o n  o u r  k n o w l e d g e  o f  W(fi) (i.e., a necessa ry  c o n d i t i o n  for  m a x i m i z i n g  the  
S h a n n o n  i n f o r m a t i o n  o f  P ( W )  at  t~) is t ha t  P(x) be a de l ta  func t ion .  In  
o the r  words ,  u s in g  M a x E n t  wi th  a d i s t r i b u t i o n  P(x) resul ts  in m i n i m a l  
e n t r o p y  over  P,,(W) iff P(x) is a de l ta  f u n c t i on .  As  a result ,  we w a n t  
P t0(W) to  be  as close to a de l ta  f u n c t i o n  as possible .  ( F o r  s imi lar  reasons ,  
for  p - type  m e m o r y  sys tems we will w a n t  Pt~(S) to be  as close to a de l ta  

f u n c t i o n  as p o s s i b l e - - s e e  Sect ions  2 a n d  3.) 

1.4. Time-Symmetry and c-Type Memory Systems 

I t  is i m p o r t a n t  to n o t e  s o m e  d i s t i nc t ions  be tween  the  m e m o r y  sys tems 

d iscussed  a b o v e  a n d  h u m a n  m e m o r y .  A n  abs t r ac t  c o m p u t e r ' s  R A M ,  w h e n  
used  as a c - type  m e m o r y  to give i n f o r m a t i o n  c o n c e r n i n g  a p r ev ious  s tate  o f  
the  c o m p u t e r ,  is n o t  a p - type  m e m o r y  sys tem in the sense o f  de f in i t ion  (2.1),  
g iven  be low.  O n  the  o t h e r  h a n d ,  as is d iscussed later ,  h u m a n  m e m o r y  seems 
to  be  p- type ,  1~ a n d  at  a m i n i m u m  cer t a in ly  is n o t  c - t y p e - - t o  r e m e m b e r  

1~ memory is not well understood. However, some general comments can be made. 
First, it appears that human memory is anatomically localized to certain regions of the 
brain (e.g., the hippocampus). In addition, human memory is associative. Moreover, current 
wisdom says that the storing of a memory in those regions corresponds biologically to the 
modification of synaptic weights between the neurons in those regions, perhaps according to 
a Hebb-type rule. The memories themselves, be they of abstract thoughts or of sensory 
impressions of the world outside the brain, represent information from outside of these 
regions. Second, rather than worrying about the precise biological process involved in storing 
and recalling a memory in the memory centers of the human brain, we can abstract those 
centers and describe them as an input-output mapping taking certain neural firing patterns 
fed in from the outside and transforming them into other neural firing patterns which are 
then fed back to the outside. Each input-output pair in such a mapping serves as a memory 
system. Usually one thinks of the input to such a memory system as a particular question, 
and output as an answer to the question. For example, the input could be "My first grade 
teacher's name:" and the output of the memory could be "Mr. Smith" (the complete input- 
output pair is "My first grade teacher's name: Mr. Smith.") Different memory systems are 
delineated by different input questions. New memories are stored by modifying the appropri- 
ate input-output pair, i.e., by having the appropriate memory system interact with the external 
world and thereby induce a correlation between the state of the memory system (i.e., the 
output corresponding to its input) and the relevant aspect of that external world. We have 
confidence in a memory system only to the degree that we believe the completed input-output 
pair truly reflects "information concerning the world external to the memory system at a time 
different from the present." Note the necessity in all this of a special "I don't know/remem- 
ber" output for those inputs whose corresponding output from the outside has not yet been 
recorded. In terms of the framework presented in this paper, this "I don't know/remember" 
output corresponds to the state P,,(S). This special state is the known pre-{interaction with 
the outside world} state of the memory system. All human memory systems have their output 
component initialized to this special "I don't know/remember" state at first--exactly as in 
p-type memory systems. 
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something concerning the environment outside of our brains, we humans do 
not need to deterministically evolve that environment outside of our brains�9 
Another difference between human memory and computer memory is associ- 
ated with the fact that computers can be run in a completely reversible 
manner whereas human brains are time-asymmetric. (We think forward in 
time, not backward.) Similarly, even if human and computer memory sys- 
tems used similar mechanisms to store a memory (i.e., had similar laws 
governing how W affects S), the way the stored memory is used to infer 
something concerning the external world is fundamentally different in the 
two types of systems�9 To prove this, we need do no more than note that the 
human brain can only remember the past. (A fact which is also true of all 
p-type memory systems--see Sections 2 and 3.) In contrast, c-type memory 
systems can remember in either direction of time: c-type memory systems 
work by evolving the joint system S • W via Hamiltonian dynamics, and 
that evolving can be into the future as easily as into the past. 

This symmetry of c-type memory systems is completely overt in truly 
symmetric reversible computers, where, tautologically, no thermodynamic 
or computational phenomenon can distinguish between the two directions 
in time, and therefore memory cannot distinguish between the two directions�9 
What is interesting is that this symmetry also holds for nonreversible compu- 
ters; i.e., it holds even i f  the program using the memory is logically irreversible. 
To have some abstract RAM act as a future memory, rather than backtrack- 
ing the entire computer from to, one now "forward-tracks" it: simply evolve 
forward from the current state of the entire computer and prove that the 
current contents of that RAM give information concerning some data which 
in the future will exist in a certain place in the computer external to that 
RAM. 

For example, consider the following code segment: 

�9 . ~ 

Y = Z ;  
Y = Y + I ;  
�9 ~ �9 

Let to be the moment just before the code segment has executed, and t~ the 
moment just after it has executed. The state of {the abstract RAM containing 
Z } at to gives information concerning the state of something external to that 
{RAM containing Z} at t~ (namely, the contents of the abstract RAM 
containing Y at t~). This arises via exploitation of knowledge of the state of 
Z 's  external world (i.e., the computer program) at to. Clearly, modifying 
the state of {the abstract RAM containing Z} modifies our conclusion about 
the future state of that world external to {the abstract RAM containing Z }. 
Similarly, modifying the program (and therefore the state of the external 
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world of {the abstract RAM containing Z }) modifies our conclusion about 
the future state of that world external to {the abstract RAM containing Z }. 
Therefore {the abstract RAM containing Z} meets all four requirements 
for being a c-type memory system, of the future. We have simply "forward- 
tracked" rather than "backtracked" the entire abstract computer. I1 

The many-to-one mappings of  an irreversible computation can termin- 
ate deterministic backward evolution of  the program after the evolution has 
only proceeded a finite distance into the past. This can occur, for example, 
if sometime in the past the contents of  the RAM one is remembering was 
set by the CPU to all O's. In such a case, one cannot evolve further back in 
time than when that action was taken by the CPU. (Or, to put it another 
way, any conclusion concerning W(6) for times t~ previous to such an action 
by the CPU is independent of S(to). Therefore S(to) does not serve as a 
memory of  such a W(6).) Many-to-one mappings can set a limit on how 
far into the past one can remember. 

In a similar manner, many-to-one mappings can erase the contents of 
the RAM that is being "remembered" after the evolution gets only a finite 
distance into the future. This is how they can set limits on how far forward 
a computer 's memory of  the future can go. Many-to-one mappings play no 
temporal favorites; they are as free to restrict memory of the future as they 
are to restrict memory of  the past. 

It could conceivably be extremely helpful to have a temporally symmet- 
ric memory. Therefore the question arises; why did not evolution design 
human memory to be c-type? To answer this question, note that to use a c- 
type memory we have to understand and be able to calculate evolution in 
W space, as well as evolution in S space. Moreover, we would like to have 
P,0(W) be a delta function (see the end of  the previous subsection). If W 
possesses simple dynamics and has relatively few degrees of freedom, then 
a c-type memory system can be feasible. This is the case with memory in 
abstract computers. However, in any environment not as compact and well- 
ordered as a computer, P,0(W) will never be a delta function, and the deter- 
ministic evolution in Fs • Fw is so unwieldy and requires the manipulations 

HThis process of forward-tracking assumes that nothing happens to render its proof concerning 
the future state of the external world invalid (e.g., a human does not come along at sometime 
in the future and twiddle the bits by hand, overriding the program). But in a similar manner, 
the backtracking memory assumed that nothing happened to render its proof invalid (e.g., a 
human did not come along at some time in the past and twiddle the bits by hand, overriding 
the program). Remembering in either direction requires the assumption that the computer as 
a whole is logically closed throughout the evolution of the program. Without this assumption, 
any "memory" is just so much informationless noise. All of this applies to probabilistic 
computer memories (Pearl and Crolotte, 1980) as well as to more common deterministic 
abstract computer memories. 
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of so much information extraneous to the actual memory itself as to verge 
on the useless. As an example of this, just try backtracking (/t la c-type 
memory) from the current state of the atmosphere to ascertain what the sky 
looked like over Iowa yesterday at 9 : 15 AM. (Contrast this with the ease 
with which a p-type memory system (like a photograph) can tell one what 
the sky over Iowa looked like yesterday at 9:15 AM.) It is due to this 
difficulty with large W's that humans do not use c-type memory. We want 
to be able to use our memory even when W contains the entire physical 
universe external to our brains. 

In general, in a real computer there are two places that entropy change 
(associated with p-type memory, many-to-one mappings, initialization, and 
time-asymmetry) might occur of necessity: in the mechanism of the input- 
output devices, or in the memory mechanism of the human operator, via his 
or her memory of the initial state of the machine. Both of these are inter- 
actions with a system external to the computer as a whole. The actions of 
an abstract CPU operating on an abstract RAM, independently of the out- 
side world, do not necessarily cause a change in entropy. This is because 
abstract Turing machines can be constructed which are completely invertible 
so that no information is lost during a calculation. For such a machine, 
retrodiction and prediction are equally reliable, there is no sense in which 
there exists backward memory but not forward memory, and there does not 
exist an arrow of time. 

2. p-TYPE MEMORY SYSTEMS 

Recall that there are two useful types of memory system: those which 
rely on P,0(W), and those which rely on P,,(S). Memory systems which rely 
on P,0(W) were investigated in Section 1. The current section investigates 
memory systems which rely on P,,(S). First, this section presents a real- 
world example of such a memory system. After this, this section generalizes 
from this example to present (2.1), the definition of p-type memory systems. 
Then this section presents information-theoretic and statistical mechanical 
arguments justifying the assertion that all memory systems which rely on 
P,,(S) are p-type. 

In both this section and Section 3 several naturally occurring p-type 
memory systems (i.e., systems for which W is the entire physical universe) 
will be considered. Since the precise mechanism by which the human brfiin 
remembers is not well understood, only inorganic naturally occurring 
memory systems (e.g., a photograph) will be investigated in detail. However, 
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there is no reason to doubt that human memory as well is a p-type memory 
system, ~2 and in the rest of this paper it will be assumed that it is. 

2.1. Memory in a Photograph 

Consider a photograph on a piece of film. That film is a memory system 
in that its current state (the image in the photograph) gives us information 
concerning an interaction the film once had with something outside of it 
(namely, a set of photons). 

For this system tj < to and, as will be shown below, J =  P,,(S). There 
are a number of salient features of this memory system. 

First, the film memory system is designed so that its state is relatively 
stable after the interaction. This allows us to not worry about how long it 
has been since the exposure of the film (i.e., since the interaction of the 
memory system with its outside world) when we try to deduce details of the 
external interaction from the memory system's current state. 

Second, the possibility exists both of the film being exposed and there- 
fore having a memory (i.e., of  the memory system being open in the past) 
and of the film not being exposed and therefore not having a memory (i.e., 
of the memory system being closed in the past). 

Third, the film memory system is designed so that it cannot have spuri- 
ous memories of the outside world arising if there had in fact been no 
external interaction. This follows from the fact that we can always distingu- 
ish between a state reflecting a real external interaction and the state which 
arises if there had not been any such interaction with the outside world. 
(Without the ability to make this distinction, we would never be able to tell 
if a state of the system truly reflected an interaction with the outside world.) 
More precisely, film memory systems avoid the possibility of spurious mem- 
ories by having the preinteraction state of the film, the initially unexposed 
black state of the film, be predetermined, stable, and distinguishable from 
the states the system is allowed to occupy if there had been an external 
interactions. The setting up of the film memory system in its predetermined 
preinteraction state will be referred to as the system's "initialization" (when 
observed, this initialized state of the memory system can be thought of as 

~2Nonetheless, it is conceivable (though highly unlikely) that the memory mechanism in the 
human brain is b-type memory, the third, particularly weak form of memory described in 
Appendix A. It is also conceivable (and a bit more likely) that although human memory is 
p-type, there are b-type "prior knowledge" aspects to how the distribution P,~(S) is inferred 
(see Section 2.3). The important point for the psychological arrow of time is that, whether 
humans use p-type memory or use b-type memory, their memory must be temporally asym- 
metric, since both types of memory rely on the second law. (By the discussion at the end of 
Section l and in footnote 10, we know that human memory cannot be c-type, which is the 
only symmetric type of memory.) 
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corresponding to the reply "I do not know" in response to a query of that 
memory system). The film memory system is initialized when it is originally 
coated with a uniform layer of unexposed photosensitive material. This 
initialized state, whose existence is necessary if we are not to have spurious 
memories, corresponds to a peak in the distribution P,,(S). 

Finally, for us to have confidence in our initializer, we want it to be 
robust. We want it to be able to initialize the system regardless of the system's 
precise state prior to the initialization. (For example, we do not want to 
have to be concerned with the state of the components of the piece of film 
prior to its construction.) We want to be confident in our conclusion of what 
relationship exists between the memory system's current state and its past 
history. This confidence is only as strong as our confidence that the initializa- 
tion took place regardless of the state of the system prior to initialization. 
Such confidence in the initialization process is what allows us to have no 
qualms about "resetting" a memory (i.e., reinitializing it) and using it again. 

Summarizing, we want the state of the memory system to be stable 
when not interacting with the outside world; we do not want to preclude 
either the possibility of an external interaction or the possibility of no exter- 
nal interaction ; we require the existence of a special initialized state which 
serves as a reference state signifying no external interaction; and we want 
to have confidence that the system was in that initialized state at tj whether 
or not we know anything about the system's state for times previous to h.  

2.2. p-Type-Memory Systems 

Although the preceding example was presented as memory of the past, 
we can easily generalize from it to get a time-symmetric definition of memory 
systems which work via the same logical mechanism as memory in photog- 
raphs. This generalization, (2.1), defines p-type memory systems. It is pre- 
sented and discussed in this subsection. We can hypothesize that not only 
photograph memory systems, but in fact all memory system which exploit 
P,,(S) are necessarily p-type. Arguments establishing this hypothesis are 
presented in the subsection following this one. 

(2.1) If a system S is in a state so at a time to, the difference between So 
a n d  another state s~ is said to be a p-type memory, be it of the past or of the 
future, and the system is said to be a p-type memory system if" 

1. It is known that at a time tl =/= to the system was in the state s~. 
2. For any moment in the temporal interval extending from tl to to, 

the state of the system is stable if it is not interacting with the external world. 
In particular, in the absence of interactions with the external world between 
times to and t~, so, the state of the system at to, would equal sj. 
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3. With the possible exception of the precise value of sl provided, 
nothing precludes the memory system's being closed for the time period 
between to and tl, and nothing precludes the memory system's being open 
for that time period. 

4. If  t~ < to, there exists a multiplicity of states the system could have 
been in for times previous to the process forcing the system to be in state s~ 
at time t~. If  t~ > to, there exists a multiplicity of  states the system might be 
in for times following the process forcing the system to be in state s~ at 
time t~. 

The rationale for requirement 3 is that a priori we want to allow both 
the possibility that a memory is stored in S and the possibility that S is 
"empty," containing no memory of its external world. 

If  so=sj ,  we will sometimes loosely say that we "have no memory" in 
the interval between t~ and to. More usually, Sor  and the difference 
between the two, being evidence of an external interaction between to and 
t j, constitutes the memory. Note that given only the information that S(to) = 
So, and not also that S ( t j ) = s l ,  one could not conclude that at some point 
in its history S must interact with W (this is because one could determin- 
istically evolve S(to)= So to any time t~ using the assumption that S is closed, 
and not arrive at a contradiction). This is why it is crucial to meet require- 
ment 1 of (2.1). 

Requirement 2 of (2.1) is made for calculational convenience; it makes 
it easier to use the memory. In certain unusual circumstances it is possible 
to weaken it into the requirement that we know the precise evolution law 
for the memory system in the absence of external interactions. We will not 
consider such weakenings of requirement 2 in this paper. 

The state-space collapsing down to the state sl at the time tl (i.e., the 
process of meeting requirement 1, a process alluded to in requirement 4) is 
referred to as the initialization of the memory, even if t j>  to, so that the multi- 
plicity of states being forced into s~ occur after t~ rather than before it. ~3 Given 
just the knowledge of the current state of the memory system, knowledge of 
which state is the initialized one is not only necessary for us to conclude that 
there was (or will be) an external interaction, but also for us to infer any details 
of that external interaction. The reliability of the memory depends on our con- 
fidence in that knowledge of which state is the initialized one, i.e., it depends 

~3"Initialization" might seem a poor choice of  word, since it carries temporally asymmetric 
connotations of a "before" and an "after." However, all human language carries such conno- 
tations to some degree, since human thought is time-asymmetric. The policy in this paper is 
to highlight all terms which are being treated in an explicitly time-symmetric manner in spite 
of their connotations in common human speech. In general, even for terms not so highlighted, 
it should be assumed that a time-symmetric meaning is being imposed unless the context 
makes it explicitly clear that this is not the case. 
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on our confidence that requirement 1 is met by the system's world-line. 
Requirement 4 of (2.1) reflects this desire of ours to have a high confidence 
that requirement 1 is met. It also reflects our desire that the initializer be able 
to function a number of times in succession, starting with differing initial con- 
ditions, and each time function with identical behavior as a memory system. 

The multiplicity of states temporally adjacent to the initialized state are 
referred to aspre-initialized states, again, even if t j > to. (As always, despite the 
temporally asymmetric colloquial connotations of the terminology, here the 
definitions are made in an explicitly symmetric form.) 

Note that no assumption has been made in (2.1) that to > tl. If t~ < to, 
the initialization consists of a many-to-one mapping; if to < tl, it consists of 
a one-from-many mapping, the temporal inverse of a many-to-one mapping. 
(See Wolpert (1990) for a discussion of such mappings.) No implicit arrow 
of time has been assumed. 

Note that c-type memory systems assume complete knowledge of the 
outside world. In contrast, p-type memory systems need no information 
about the outside world whatsoever to operate. Note also that there is no 
need in (2.1) for a requirement similar to requirement 4 in (1.1). This is 
because it is automatically and trivially true that either {changing the value 
of S(to) while leaving S(tl) alone) or {changing the value of S(tO while 
leaving S(to) alone) will result in a different conclusion concerning the 
change in S caused by IV. As a result, either modification will result in a 
different conclusion concerning P,I(W). 

In general, with p-type memory systems care must be taken in determin- 
ing what is the memory system and what is the external world. For example, 
imagine that we have a plate which we know was once white but is now 
splattered with black ink. Clearly, we have a memory (of the past), and 
intuition might .say that it is the plate which serves as the memory system. 
This is incorrect, however--the plate itself has not been altered in the slight- 
est by its interaction with its outside world, and it provides no information 
from the past. The plate is simply now physically adjacent to some black 
ink. By itself, it gives no information concerning its past interaction with the 
ink (i.e., concerning the splattering). In point of fact, it is the ink which is 
the p-type memory system in this case, with its initialized state being "none 
of the ink is on the plate". It is the spatial configuration of the ink which 
has been changed by the interaction and which provides us with information 
from the past concerning the interaction. 

2.3. Why Memory Systems Which Exploit etl(S ) Are p-Type 

This subsection presents information-theoretic and statistical mechan- 
ical arguments that all useful memory systems which rely on P,,(S) are 
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p-type (i.e., must work via the same logical mechanism as a photograph). 
Any memory system which is not either b-type or c-type must exploit 

information about S at times other than to. As was mentioned in the discus- 
sion of c-type memory systems, for simplicity we can have that "time other 
than to" be tl. Moreover, Appendix B tells us that we want Pt,(S) to be 
infinitely peaked about some point Sl. This establishes the first requirement 
of (2.1), the definition of p-type memory systems. 

Just as c-type memory systems, starting with S(to) and W(to), rely on 
knowledge of the dynamics of S x W, p-type memory systems, starting only 
with S(to), rely on knowledge of the dynamics in S. Since we are setting up 
the memory system, the dynamics in S is more or less under our control. To 
keep things as caiculationally tractable as possible, we configure S space 
dynamics to preserve the S value from the end of the interaction all the way 
up to to. Similarly, we ensure that S(h) is preserved in the case that there 
was not an interaction. This establishes the second requirement of (2.1). 

Requirement 3 of (2.1) is axiomatic to all types of memory. 
Therefore we only have yet to establish requirement 4 of (2.1). A fully 

rigorous exposition of the reasons for this requirement is beyond the scope 
of this (already lengthy) paper, and is in fact an extremely subtle issue. Here 
only the outline of such an exposition will be presented. 

Essentially, requirement 4 follows from the need to meet requirement 
1, i.e., our need to deduce that {S(tl)= s~ }. To make any deductions about 
anything, we only have direct information from the present, to, at our dispo- 
sal. In other words, we must deduce {S(h)=sj} using current information 
alone~ However, by hypothesis we cannot conclude {S(tl)=s~} solely from 
observing {S(to)=Sl}, since (in the terminology of the subsection of the 
Introduction on memory) we are here interested in memory systems relying 
on information J~P,0(S). Therefore we need more current information than 
just {S(to)=So} in order to meet requirement 1. Viewed another way, our 
goal is to be able to conclude that {S(t0 = s~ } whether or not S interacts with 
W between to and t~. However, knowledge of S(to), by itself, is not sufficient 
to make this conclusion, since it cannot tell us if there is or is not such 
an interaction (and given only S(to)=So, the precise conclusion reached 
concerning the state of S at t~ depends critically on this question of whether 
or not there is such an interaction). 

Note that any scheme to deduce {s(h)= sl } is completely independent 
of the working of the memory; the memory is simply a device designed to 
facilitate using the provided (!) information {S(h) = s~ }, along with the other 
constraints of Hamiltonian dynamics and {S(to)=so} and along with the 
procedure of MaxEnt, to set P,,(W). Deducing the information that {S(h) = 
sl}, like observing P,0(W) in c-type memory systems, is a procedure not 
directly related to the ultimate use of that information in the memory. 
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In general, one can deduce {S(tj)= sl } from current information either 
through direct inference or through indirect inference. As it turns out, both 
of  these kinds of inference involve many-to-one mappings if t~ < to (one- 
from-many mappings if tl > to). 

Indirect inference means we do not directly infer from current informa- 
tion that our particular system S was in the state s~ at t~. Rather, with 
indirect inference our information beyond {S(t0) = So} is the prior knowledge 
that other systems identical to ours are invariably in s~ at t~. Such indirect 
inference usually involves the examination of  the behavior of many other 
systems of the same type as ours. ~4 Note, however, that if indirect inference 
is used, we no longer have a purely p-type memory system, but rather have 
a memory system with some b-type aspects to it. Since a detailed investiga- 
tion of b-type memory systems is beyond the scope of  this paper, indirect 
inference will be considered no further, except to note that in practice it 
invariably necessitates requirement 4 of (2.1). ~5 

For simplicity of the discussion, for the moment restrict the analysis so 
that S is a memory of  the past. Then direct inference that our particular 

t4Note that, in general, this examination will itself involve memory; a full analysis of the indirect 
inference necessarily includes an analysis of  that memory involved in the inference. 

15Some simple observations can be made concerning the manifestation of  b-type memory sys- 
tems in indirect inference. First note that an indirect inference cannot be based simply on 
prior knowledge that systems identical to S are invariably in the state s~. This is because such 
a correlation would not allow the systems to ever be pushed out of st,  and would therefore 
violate requirement 3 of (2.1). This means that any indirect inference that {S(t l)=st} must 
be based, at least in part, on prior knowledge concerning how S is being used in concert with 
W as a memory system, i.e., on some aspect o f  (2.1). Very often such prior knowledge 
concerns the state information available to a p-type memory system: S(to)=So. However, if 
the indirect inference is based on a correlation that systems identical to ours are in s~ at t~ 
whenever they are in so at to, then of  necessity there is also the correlation that W(tO is a 
state which forces s~ at t~ to so at to. Moreover, all the full p-type memory system can tell us 
is precisely this information that W(t~) is a state which forces st at t~ to So at to, and this 
information concerning W(t~) follows from (and is only as strong as) our prior knowledge 
of  the correlation between {S(t0)= So} and P,~(W). Therefore we could just as well skip the 
step of  examining the correlation between { S(t~) = s~ } and { S(to) = so} and examine the corre- 
lation between {S(to) = So} and P, ,(W) directly. In other words, this kind of indirect inference 
can be viewed as dependent on P,,(S) and independent of  P,~(S), i.e., as b-type memory. As 
a result, like b-type memory systems in general, this kind of  indirect inference invariably 
involves state-space-collapsing mappings. In fact, any kind of indirect inference invariably 
involves such a mapping. As an example, consider the following special version of  the photo- 
graph memory system: Suppose we have before as a completed photograph and that we have 
no direct evidence concerning the state of  the film before it was a completed photograph. 
(For example, we never saw the film being put into the camera, never saw it being made, 
etc.) Then to use the photograph as a memory system we have to infer, from everyday 
experience of  photography, that our particular piece of film was constructed in such a way 
that it was initially blank, no matter what the state of  its constituent components before its 
construction. In other words, we have to (indirectly) infer a many-to-one mapping. 
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system is in state sl at tl means that there is an external system Z, not part 
of  W, which interacted with S before the start of  S's interaction with W, 
and such that the state of  Z at tj ~llows us to infer that S was in state s~ 
before its interaction with W. (For  ease of  analysis, it is implicitly assumed 
that we can deduce the state of  Z at tj exactly from an observation of Z at 
the present, to.) Let the moment when Z lost contact with S be ta and let 
the moment when Z and S came into contact be tb ; tb < to <_ ft .  We want the 
known state of Z at fi, z', to tell us that the state(s) S might occupy at tb 
evolve into the unique state sl at tj. (If S is a memory of  the future, then 
all of  this holds with t b > ta > tl .) In effect, we are using Z as a b-type memory 
of  S( f i ) .  

Now in general, just given the observation that Z = z '  at t~, we do not 
have enough information to specify the state of  the joint system Z x S at tb 
precisely. In other words, there is a multiplicity of  states in Z x S at tb all of 
'which are consistent with the external constraint that Z ( q )  = z', and therefore 
all of  which are allowed (i.e., there is a multiplicity of states which get 
mapped by evolution in Fz• s to states at tl whose Z space projection is z'). 
However, by hypothesis the dynamics of  the joint system must force that 
multiplicity of  states to have the S space projection s~ at q.  In other words, 
that dynamics must force the state o f Z  • S at t~ to be unique, with the value 
(z', sO. Therefore the dynamical evolution of the joint system Z • S must 
take a multiplicity of  states to a single state; it must be many-to-one. ~6 

If the memory is of  the future, the conclusion is instead that the interaction 
between Z and S will be one-from-many. In either case, the need to "conclude 
that the system was (will be) in state sj at q "  necessitates requirement 4 of 
(2.1). This is the last of the requirements of  (2.1); we have established that 
memory systems relying on S ( q )  in addition to S(to) must meet (2.1) in full. 

2.4. Comments 

In Appendix A, the same kind of  reasoning used in the preceding subsec- 
tion to justify requirement 4 of (2.1) is used in concert with the central 

~6Since the mapping is many-to-one, by the central assumption of  the theory of  reversible 
computation, it increases entropy. Therefore, the entropy of  the joint system Z x S does not 
obey Liouville, and we know that MaxEnt,  as it is used with memory systems to infer 
P,~(W) from P,,,(S) and J, cannot be directly applicable to the process of  indirect inference. 
(There are a number of possible causes of this inapplicability. For example, the joint system 
Z x S might be connected to a heat bath. Or the constraints on Z x S might be of  a different 
type from those used in the analysis of  memory systems.) Indeed, if we could analyze Z x S 
in the same way we analyze S • W, then we would simply maximize entropy over Z x  S at t~, 
subject to the single external constraint that Z(tj)  = z'. We would thereby reach the conclusion 
that p is constant across Fs.  In other words, for such a case we could not conclude that 
S(fi) =s~ from the sole observation that Z(tO =z'. To make our direct inferences, none of the 
states S(tl)vas~ can be allowed. 
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assumption of  the theory of  reversible computation to make some general 
points about  b-type memory systems. Taking our cue from Appendix A, we 
can apply the central assumption of  the theory of  reversible computation to 
requirement 4 of  p-type memory systems. This assumption implies that the 
process of initialization results in higher entropy at tl than at tb. This means 
that such a process violates the second law if tj > to. Therefore we can 
conclude that p-type memory systems must be of  the past. Under the assump- 
tion that human memory is p-type, we have explained why humans can 
remember the past but not the future. We have shown explicitly that the 
psychological and thermodynamic arrows of  time are correlated. 

We can come to the same conclusion without directly invoking the 
central assumption. To do this, note that for direct inference the dynamics 
must be such that no state (s~si, z') in Z x  S at t~ can exist, i.e., can be 
evolved from a state (s", z") in Z x S at tb. (This is because if such a state 
could be evolved this way, then MaxEnt over Z x S would-force us to have 
a nonzero p over that state.) This fact alone leads to the conclusion that 
evolution in Z x S must be irreversible. With the second law, this in turn 
means that tb< t~, and that p-type memory systems can only be of  the past. 

Note  that the combined system (Z x S)  can be viewed as the memory 
system of  W; we are given the value of  (Z • S)  at the present, (Z x S)(to), 
and are using it to come to a deduction concerning W(tO. In a certain sense, 
(Z  • S)  can almost be viewed as a special type of  b-type memory system, 
where the inference concerning W(t~) is made via S(tl), which in turn is 
made via Z(tO. 

When analyzing memory systems, there are a number of  useful tech- 
niques to keep in mind. One, exhibited in Appendix A for b-type memory 
systems, is interchanging S and W. Another is time-reversal. As an example 
of this second technique, consider again the process of directly inferring 
knowledge about S(tj). For  t I < to, we are saying that the system Z interacted 
with S before tj and that Z ' s  current state tells us something about the state 
of  S after its interaction with Z. Fair enough; now consider the case where 
to < tj. For  such a case we are positing a system Z which will interact with 
S and whose current state tells us something about the state of  S before 
its future interaction with Z. This time-reversal of  the process is clearly 
preposterous. However, the second law is the only time-asymmetric law of 
physics. Therefore, it is the only law upon which a process can be built such 
that the time-reversal of that process is illegal while the process itself is 
allowed. As a result, without any further analysis of the direct inference 
process and of  why its time-reversed version is impossible, we can conclude 
that the second law must be involved somehow. 

We can extend this kind of reasoning. Human memory is asymmetric. 
Assuming this is not due to a design flaw, it must be a consequence of  the 
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second law. Therefore, independent of  the analysis of this paper, entropy 
increase m u s t  be involved in human memory somehow. 

3. H O W  REAL-WORLD p-TYPE MEMORY SYSTEMS 
ACHIEVE INITIALIZATION 

This section is an examination of how some naturally occurring p-type 
memory systems operate, and in particular it is an examination of how 
such systems are initialized and of how the second law is involved in that 
initialization. This examination is intended to serve as an intuitive comple- 
ment to the (relatively) formal analysis of Section 2 and Wolpert (1990). 

3.1. Internal Initialization 

The state-space collapsing of the initialization of p-type memory systems 
can either occur with S dosed or with S open. (For example, in the language 
of  Section 2, for the case where {S(h) =sl} is inferred directly, one of  the 
following two possibilities holds: all of the state-space collapsing of the joint 
system Z • S occurs at some time between tb and t~, while S is still coupled 
to Z, or some of it occurs when the two systems are decoupled at sometime 
between ta and tj .) Colloquially, we will say that initialization can be 
achieved either internally or via an interaction with an external systeml (Such 
an initializing external interaction is not to be confused with the external 
interaction recorded in a memory.) 

Whether achieved internally or externally, initialization entails collaps- 
ing all possible pre-initialized states, be they in the past or the future (corre- 
sponding to memory of the past or the future, respectively), to s~, the 
initialized state. In other words, the initialized state serves as an attractor, 
of the past if remembering backward and of the future if remembering 
forward. 17 

The rest of this subsection is an examination of internal initialization; 
external initialization is treated in the next subsection. An example of a self- 
initializing memory system is the surface of the moon, given the information 
that sometime in the past the surface managed to relax and therefore became 

~TNote that the typical one- to-many mapping of a chaotic system is not an attractor of  the 
future. It is not  the temporal inverse of  a many-to-one mapping.  To see this, examine a one- 
to-many mapping  going from a state s at t ime t to one of  a multi tude o f  states at t '>  t. It is 
not true for such a mapping  that  regardless of the precise state s' at t', we can conclude that  
the system must  have been in the state s at t. In fact, there are in general many  possible pre- 
images of  the mapping.  But for s to be an attractor of  the future, it mus t  be the only pre- 
image of  the mapping.  This is exactly analogous to the necessity that a state be the only post- 
image of  a mapping if it is to be an attractor of  the past. For  an elaboration of this distinction 
between the various kinds of mappings,  see Wolpert  (1990). 
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relatively smooth (and therefore, in particular, given the information that 
no lunar geological process exists which disturbs the relaxation of  the lunar 
surfaces to smoothness).  The ancient smoothing of the moon ' s  surface is the 
initialization of  requirement 4 of  (2.1). Our knowledge of such a smoothing 
process in the past is how we meet requirement 1 of  (2.1), and the fulfillment 
of  the other requirements is obvious. Present-day craters on this surface 
contitute the system's memories of  having interacted with external systems 
(i.e., meteors) sometime in the past, after the initialization to smoothness. 
Since such surfaces with craters have lower entropy than smooth, level (i.e., 
initialized) surfaces, 18 the second law allows us to conclude that they are 
evidence of an external interaction in the past. This is how they serve as 
memories of  the past. 

For  a self-initializing system, in the real world (where t~ < to), the attrac- 
tor state s~ is invariably the state of  maximal entropy, as in the moon  
example. For  such systems, So and s~ are usually correlated with the entropy 
of  the system. In these systems it is always given that at the end of  initializa- 
tion the memory  mechanism has been closed and relaxing long enough so 
that, due to the second law of  thermodynamics,  it is at maximal global 
entropy. The relaxing to the state of  maximal entropy is the initialization of 
the memory  system. Using the second law of  thermodynamics, we can use 
these systems as backward memories. For  example, if the memory  system's 
states are indeed correlated with the entropy of the system, and if sl is the 
state of  maximal entropy, then the second law tells us that if at anytime after 
initialization the system has low entropy, then there must have been an 
external interaction sometime in the past, after the initialization. Entropy 
would be high if the system had remained c losed--  since it is not high, the 
system must have been open. This evidence of  an external interaction (e.g., 
a crater) is the memory.  Note  that the initializing process of  these kinds of 
memory  systems, being based on the second law, cannot work for t~ > to ; in 
our universe, self-initializers have t~ < to.19 

3.2. External Initialization 

In general, when the initializing is external (so the system is open while 
collapsing to sl) ,  there is no need for the memory  system to depend on 

~STechnically speaking, it is only the entropy of the memory system, i.e., of the matter making 
up the moon before the impact, which has shrunk. The meteor has added mass and therefore 
entropy to what we colloquially call "the moon"--this extra entropy must be subtracted off 
to get the change in entropy of the memory system by itself. 

~9It might be thought that strict time symmetry would allow anomalously high entropy to be 
used as a means of very accurately inferring the future in such self-initializing systems, just 
as low entropy allows inferring of the past. To do this, one would assume a system is initialized 
in the future with very low entropy, and then, if at a previous time the system has higher 
entropy, one would be able to conclude that the system was open at some moment between 
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differences between the entropies of  So and s~. This is because the collapsing 
to an initial state, although increasing the entropy of  the combined initial- 
izer -memory system, often does not result in maximal entropy of the 
memory  system by itself. As a result, So and sj can have the same entropy 
and be distinguishable, and yet s~ can still be stable in time (requirement 2). 
An example of  this kind of memory  is a digital recording of  some data, in 
an Electronically Erasable Programmable  Red-Only Memory  (EEPROM) 
computer  chip, say. No  two binary strings in the E E P R O M  differ in hard- 
ware-level ent ropy--a l l  states are equally relaxed. Yet if we are given that 
the E E P R O M  was initialized to all O's, for example, and that it now contains 
some l 's ,  we know that it has had an interaction with the outside world 
sometime since initialization. The meeting of requirements 1-4 is immediate 
and obvious. We have a non-entropy-based memory  mechanism. 

Another  example of  an externally initialized system is an ocean-side 
beach. The ocean, wind, and rain sweeping over the sand serve as the external 
initializer of  the beach. The difference in state between such a swept beach 
and (for example) the same beach with a square etched on it is the evidence 
that the beach with the square interacted with an external system (i.e., a 
square-etcher) sometime since it was initialized. It  is trivial to verify that this 
system for remembering square etchings meets all four requirements of  (2.1). 
The photographic plate o f  film is yet another example of an externally 
initialized system. For  this system, the initializing is done by the manufactur-  
ing process which produced the plate. 

For  such non-entropy-based memory  systems, initialization does not 
occur through the assumption that the system has sufficiently relaxed to be 
in a defnite state at t~. Instead it occurs through the assumption that an 
external system has interacted with the memory system, and left it in the 
definite state at tj. Now, all such external initializing interactions will occur 
in some nonzero time interval At. And by requirements 1 and 3 of  (2.1), we 
want to have the system fixed in its initialized state at the temporal  end of  
At which is closest to to. Given the real world, this is enough to force t~ < to ; 
we can design initializing interactions which always end with the memory  
system in a definite, predetermined state regardless of  its state at the begin- 
ning of  the interaction, but we cannot design interactions which always begin 

its initialization and the observation of its high entropy. Unfortunately, due to the second 
law, an external interaction is required anyway, between t~ and to, just to meet requirement 
I of (2.1) and ensure the low-entropy initialization in the future. This violates requirement 3 
of (2.1). We have a "memory" whether we want one or not. Entropy-based backward memory 
mechanisms as used in nature, on the other hand, actually use the second law to their 
advantage, initializing the memory without necessitating an external interaction between tt 
and to. Initialization using external interactions occurring outside of the window [to, tl], 
which also makes use of the second law, is considered below. 
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with the memory system in a definite, predetermined state regardless of  its 
state at the end of  the interaction. Therefore t~ < to. 

As one might suspect, the asymmetric fact that real-world external ini- 
tializing interactions can end in a predetermined state but cannot begin in 
one has its base in the second law and in how real-world external initializing 
interactions make use of  this law. Real-world interactions which initialize 
by leaving the memory system in a definite state s~ work by coupling the 
memory system and the initializer into a composite system which then relaxes 
to a higher (joint) entropy. After this relaxing, the external initializer is 
removed. The state of  the memory system corresponding to this maximal 
joint entropy is unique and is Sl, whereas there are many possible states of  
the memory system corresponding to a lower joint entropy (e.g., all states 
the memory system could have been in prior to the initializing interaction). 
Note that this initialization to s~ was dependent on the second law of  thermo- 
dynamics. As a result, this process can be used to end the initialization of  a 
memory system in a definite state, but not to start it in one. Just as with 
self-initializers, for externally initialized memory systems it is maximizing 
entropy that serves to direct memory state space flow to a unique attractor 
state s', and thereby initialize the system. Therefore, just as with self-initial- 
izers, for externally initialized memory systems the moment of  initialization 
must precede the moment when the memory is read. 

3.3. Discussion 

Note that it is always easier to convince someone that a system was 
once in one of many states than that it was once in one particular state. In 
their collapsing of the state space the initializations of p-type memory sys- 
tems exploit this. Such initializations allow the observer to convince himself 
or herself only that the system was once in one of the many preinitialized 
states, all of  which get mapped to the single state sj. With mappings that 
collapse state space, it is not necessary to narrow things down to the state 
s~ directly. (In the language of  Section 2, with direct inference z' only needs 
to convey sufficient information to allow us to conclude that at tb, Z • S is 
in one of the multitude of states which get mapped to S-- sl at h .  Similarly 
for indirect inference.) 

As an example of  how it is easier to convince someone that a system 
was once in a volume in state space rather than once at a particular point in 
state space, reconsider the self-initializing example of the moon's  surface. 
To use the lunar surface as a p-type memory system, we only have to make 
the relatively easy inference that the surface of  the moon was once quite hot 
(and as a result managed to relax gravitationally). Because this is such a 
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weak and imprecise inference, it is easy to gather independent evidence 
corroborating it. Now consider how things would differ if the initialization 
had not been through a many-to-one state-space collapsing process. In such 
a scenario, any lunar profile at all could serve as the initialized surface. 
Smoothness is irrelevant in this case, so for illustrative purposes pick any 
one particular craggy lunar profile as the initialized state. In this scenario, 
using the surface of the moon as a memory would necessitate inferring from 
current data that the surface of the moon had had the particular (initialized 
state) craggy profile at time tj. (The lunar surface memory would then work 
by observing whether or not the current profile of the moon's surface is 
identical with this craggy initialized profile.) Such an inference of one par- 
ticular craggy profile in the distant past is exceedingly difficult, to say the 
least. This kind of difficulty makes essentially useless any scheme which 
tries to infer {S(t0 = s~ } without the benefit of state-space collapsing. (The 
discussion of Section 2 goes further and argues that such a scheme is actually 
impossible.) 

It has long been believed by many researchers that the asymmetry of 
memory in humans must follow from the thermodynamic arrow. However, 
it is only now, with the exposition of this section and of Section 2, that the 
connection between the two arrows of time can be seen in a detailed and 
formal manner. In particular, the analysis of this section implies that both 
externally and internally initialized p-type memory systems depend critically 
on the second law. It is not just that such memory mechanisms obey the 
second law, as argued by Hawking (1988), for example, and as implied by 
the analysis of Section 2. Rather, such memory mechanisms apparently rely 
on the second law--without a law like the second law of thermodynamics, 
there could be no p-type memory, of either direction in time. This is because 
p-type memory systems use the second law itself as the state-space-collapsing 
process (the second law takes a multiplicity of low-entropy states to a single- 
entropy state, namely Smax--see Wolpert (1990)). 20 

2~ are several interesting (but as yet unproven) conjectures which follow from the central 
importance of  the second law to the working of  p-type memory systems. For example, because 
of  the inherent uncertainty in determining that S(tO =s~, does it necessarily follow that no 
p-type memory system is 100% reliable? More generally, is it true that no memory system of  
any type, if it has no access to W(to), can fix P , ( W )  to a delta function, whether t~ < to or 
vice versa? The conjecture is obviously true if t~ > to. What is interesting is that it might hold 
even if t~ <to.  After all, even if one could envision a system in which one's confidence that 
S(tO=s~ is as strong as one's confidence that entropy cannot decrease with time, since the 
second law says only that there is a very small--but  nonzero--probabil i ty that entropy can 
shrink with time, there would be a very small--but  nonzero--probabil i ty that S(t~)~s~. If 
this conjecture is true, then it would imply, for example, that one could never be 100% 
convinced that a particular photograph is an accurate depiction of  a scene. 
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4. T H E  P S Y C H O L O G I C A L  ARROW OF TIME AND 
A S Y M M E T R I C  M E M O R Y  

This section presents an argument that the psychological arrow of  time 
is a consequence of  the temporal asymmetry of human memory. 

Just as there is no privileged position which we can call "here" which 
is always moving in a particular direction, there is no privileged time "now" 
which is always moving in a particular direction (toward the future). This 
is demanded by relativity's insistence on the equivalence of space and time. 
"Now",  along with "here",  is just a reference to a particular point on a 
world-line. All moments in time "exist";  there is no law of  physics describing 
a passing of the baton of reality from one moment  to the next, no "flow" 
of  time 2~. No moment in time is picked out by the laws of physics as being 
special, just as no position is picked out by the laws of physics as being 
special. 

The human mind does not perceive this, however. To humans, the world 
seems to have a privileged present, moving forward through time. Despite 
relativity, time, unlike space, appears to be asymmetric. This perceived tem- 
poral asymmetry is the famous psychological arrow of  time, 

To explain the psychological arrow, it is first necessary to relate it to a 
phenomenon which is amenable to mathematical analysis. Without such a 
mathematical handle, arguments will be over words rather than over physics. 
The "mathematically amenable" phenomenon most readily related to the 
psychological arrow is backward memory. It turns out that this phenomenon 
is sufficient to induce the psychological arrow. 

To understand how asymmetric memory causes the psychological arrow 
of  time, first note that every moment  in time is, to the human mind occupying 
that moment, "now."  There are an infinite number of  these "nows," and 
information is transferred among them via one's backward memory. As a 
result, a human at one "now" can remember having thought at the "now" 
2 seconds in the past, "What  will I be observing in 2 seconds? Will I be 
observing what I think I will?" The human at the original "now" can also 
note what its present observations really are, thereby testing how predictions 
from the past stand up in the future. This allows mental processes to "go"  
from the now of 2 seconds ago to the current one, but not vice versa. 

There are two important properties of  this memory-aided prediction- 
testing. First, it can be applied to any moment in time (i.e., at every moment 

21A "flow" of something is a derivative of a variable with respect to time. Since the two variables 
defining such a derivative have to be distinct (lest the "flow" have the fixed rate of l), a "flow 
of time" can only be defined if there are two dimensions of time. Since there is no second 
dimension of time, as is implied by the term "the flow of time", "the flow of time" must be 
a completely meaningless term. 
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in time, one can remember the previous moments in time leading up to the 
current one). Second, all such prediction-testings have the same orientation : 
toward the future. As a result of these properties, the overlappings of all the 
prediction-testings result in an impression of time "moving forward." Due 
to backward memory, forward is the only direction mental processes 
c a n  go .  22 

Note that no asymmetric assumption has been used in these arguments. 
If instead it were only the future of the world-line that could be remembered, 
time would appear to "move" into the past. Similarly, imagine that at all 
points on your world-line you could remember the events to your left on 
your world-line, but none of the events to your right. Imagine that in addi- 
tion your world-line never doubled back on itself spatially (just as, due to 
your world-line's never exiting the light-cone, it never doubles back on itself 
temporally). Under these conditions, space would appear to you to "move" 
to the right. 

All of the universe's world-line exists and is fixed, and the laws of 
physics are simply relations between different points on that world-line. 
There is no experimental evidence of a dynamic "evolving" of the universe, 
going from the past to the future, which transforms the universe from an 
undetermined to a determined state. 23 The subjective impression of such a 
dynamic evolving therefore must be an illusion caused by a "static" law 
relating the prefixed points on the world-line. And it is almost impossible to 
conceive of any objectively verifiable "static" law, other than asymmetric 

22As an aside, note that this correlation of  the subjective arrow of time with memory and 
therefore with the second law of thermodynamics throws a big monkey-wrench into the idea 
of  time travel: unless one could somehow get around the second law, in going back in time 
one would lose all memory of the present. This inability to travel at will through time does 
not break the equivalence between time and space, however. This is because, strictly speaking, 
there is no such thing as "space travel" at will either, in the sense that due to the universe's 
being deterministic, we do not have the freedom to fix our future position in space any more 
than we can fix our past position in space. The reason we think we have the freedom to 
determine our own future position can be traced to our subjective impression that we have 
free will. This perception of  free will, in turn, is part of  the subjective impression of  a 
psychological arrow of  time, which (it is argued here) is simply a side effect o f  the asymmetry 
of  our memory. According to the point of  view of this paper, the perception of  "free will" is 
nothing more than an illusion caused by this fact that to us the past (being remembered) 
appears fixed, whereas the future (not being remembered) appears free to be set. Hencefi-ee 
will. 

~3Although this analysis is presented in a classical framework, its conclusions still follow in a 
quantum mechanical framework. For example, Everett's (1957) famous many-worlds inter- 
pretation shows how quantum mechanics dbes not necessitate an "evolving" of  the universe 
from an undetermined to a determined state. To Everett, the illusion of  such an evolving in 
quantum mechanics is a consequence of the fact that we only have access to a subset of  the 
entire universe (i.e., only a subset of  all the worlds) rather than to the entire thing. 
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memory,  which could account for an illusion of  movement  along one's 
world-line in a particular spatiotemporal direction. 24 

5. C O N C L U S I O N S  

In this paper it is shown that the psychological arrow of time can be 
reduced to the temporal  asymmetry of human memory.  This reduction 
allows us to discuss the psychological arrow in a mathematical  manner,  since 
(the relevant aspects of)  human memory  systems can be defined rigorously, 
precisely, and time-symmetrically. Such a definition is presented he re - -a  
careful exploration of real-world memory  systems serves to motivate this 
definition, while information-theoretic arguments serve to establish its logical 
necessity. An analysis of  this definition shows that there are two types of  
memory  system, each being appropriate for remembering in a different kind 
of  universe. In particular, this paper  argues that any memory  system 
recording the external universe of  humans, be it a memory  system of the 
past or of  the future, must rely on a process which collapses state-space flow 
to an attractor state. (This at tractor state is the state of  the memory  at its 
initialization.) The central assumption of  the theory of  ~eversible computa-  
tion tells us that in our universe such a collapsing process must involve the 
second law of  thermodynamics (Wolpert, 1990). The ~emporal asymmetry 
of  the second law thereby necessitates an asymmetry in the state-space col- 
lapsing process. This means that  human-type memory  itself is necessarily 
asymmetric in our universe, despite its time-symmetric definition. In this 
way this paper  demonstrates, in a fully rigorous and precise manner,  the 
correlation between the psychological arrow of  time and the thermodynamic 
one. 

This paper  also discusses the relation between human memory  systems 
and the other type of memory  system, which is appropriate  for highly con- 
strained universes. This second kind of memory  is best exemplified by the 
(abstract) R A M  chips in a universe consisting of  the rest of  the (abstract) 
computer.  Such (abstract) computer  memory  systems, which record only the 

24The asymmetry of human memory is indisputable, as is the fact that this asymmetry alone 
would result in some kind of asymmetry in our mental processes. As a result, the burden of 
proof is actually on those who would dispute the explanation of the psychological arrow as 
being due to the asymmetry of memory. To dispute an explanation of an observation (the 
psychological arrow) when that explanation is based solely on an indisputable phenomenon 
(the asymmetry of our memory), it is necessary to some up with some aspect of the observa- 
tion which is not accounted for by the indisputable phenomenon. In other words, unless one 
comes up with an objectively verifiable aspect of the psychological arrow which cannot be 
explained by the asymmetry of our memories, one cannot dispute the hypothesis that the 
asymmetry of our memories is the sole cause of the psychological arrow. 
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state of the computer (and not the state of the world outside the computer), 
do not require initialization and therefore do not require any state-space 
collapsing. As a result, in accord with the theory of reversible computation, 
such computers can remember their future as easily as their past. This is true 
even if the program running on the computer is not logically reversible. 
Unfortunately, computer-type memory systems are feasible only when severe 
restrictions exist concerning the universe external to the memory (i.e., exter- 
nal to the RAM chips). It is due to these restrictions that time-symmetric 
computer-type memory systems cannot be used by humans, for whom the 
external world is the entire physical universe. 

It should be noted that this paper does not address the question of why 
the second law of thermodynamics holds, given that the microscopic laws 
of the universe are time-symmetric. (This is a question which some think 
cannot be answered at all, using present-day physics (Penrose, 1989).) In 
this paper the second law is just taken as a given. A careful analysis of the 
problem of why the second law holds and a proposed solution to it is the 
subject of another paper (Wolpert, 1989). 

APPENDIX A. DISCUSSION OF b-TYPE MEMORY SYSTEMS 

This appendix discusses b-type memory systems, those memory systems 
which are provided with no information other than P,o(S). 

Suppose there is a cave some of whose stones have been arranged so 
that they spell out a four-letter word. In such a situation we would conclude 
that it was likely that a human had entered the cave in the past to arrange 
the stones into the word. The state of the interior of the cave is S, and the 
human entering it is the interaction with an external system, W. This is a b- 
type memory system--we have no a priori information concerning the state 
of any system other than {S(to) = "stones arranged into the shape of a four- 
letter word"}. 

How do we conclude from {S(t0)= "stones arranged into the shape of 
a four-letter word"} that { W(t~) involved a human}? Essentially, a Bayesian 
or maximum-likelihood analysis is used. If P,,(W) is not particularly peaked 
about the state "human coming upon the cave," then the word in stones 
had to have formed through natural causes (i.e., through the particular 
deposition history of the rocks in the cave) and the probability of a word in 
stones at to is low. On the other hand, if P,,(W) is particularly peaked about 
the state "human coming upon the cave," then the probability of a word in 
stones at to is quite substantial. Therefore it is likely that Pt~(W) is peaked 
about the state "human coming upon the cave." Another example of this 
type of memory is a beaver pond, P,o(S) peaked about the state "pond has 
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a dam" being evidence that a beaver entered the pond in the past (P,,(W) 
peaked about the state "beaver comes upon the pond"). 

Note that b-type memories can be of the future as well as of the past. 
Just interchange S and W. For example, seeing a beaver come upon a pond 
is a "memory" that the pond is likely to have a dam in the future. In practice, 
however, we will often want the memory to be the space which gets affected 
by the interaction--the external world should be barely perturbed at all by 
the process of being observed and memorized. As an extreme case, we can 
require the interaction to be such that W(fl) ~ W(to) is a single-valued map- 
ping, independent of S(tj) and S(t0). This is enough to force b-type memories 
to be of the past, as can be seen by the following (sketched) proof based on 
the formalism of Wolpert (1990). 

Define So-S(to). We will assume that the memory works perfectly, i.e., 
only one W state at tl, wl, is consistent with S(to) being So. Now in general, 
having only observed S(to)=So, any state S(fl) is possible--there is always 
some external system state at tl which will force a particular state S(fl) to 
evolve into So. (For example, the state {pattern of stones spelling out a four- 
letter word} by itself sets no restrictions whatsoever on the state of those 
stones before the human entered the cave.) However, by our assumption 
that the memory works perfectly, only W(fl) = w~ is consistent with S(to) = 
So, and all these allowed S(fl) values correspond to the same value wj of 
W(fl). (See Wolpert (1990) and note that in general a given value of W 
corresponds to more than one point in the associated phase space Fw.) Due 
to our assumption that W(fl) ~ W(to) is a single-valued mapping independ- 
ent of S(fl) and S(to), this means that there is only one value w0 of W(to) 
consistent with S(to) = So. Therefore we have a mapping taking a multiplicity 
of states in S • W at time t~ to a single state in S x W at time to. In the 
language of Wolpert (1990), the evolution in S x Wis many-to-one if t~ < to, 
and one-from-many if to<t,.  However, the central theorem of reversible 
computation tells us that this means the entropy at to must exceed the 
entropy at t~. (For example, the entropy of the total combined system of 
human/cave after the human has rearranged the stones exceeds the value 
the entropy had before the human entered the cave--the entropy gain in the 
human part of the combined system more than offsets the entropy loss in 
the position of the stones.) Therefore, by the second law of thermodynamics, 
tj must precede to, and such b-type memories where W is not perturbed by 
the interaction must be of the past and cannot be of the future. QED. 

In practice, b-type memories are not particularly useful because they 
usually do not tell us very much about W(fl). In addition, they usually work 
only for a severely limited subset of the space S,0. (For example, very few 
of the possible patterns of stones in a cave would lead us to conclude that 
the cave interacted with something outside of it in the past.) As a result, b- 
type memory systems will not be analyzed here in any depth. 
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APPENDIX B. P R O O F  THAT A DELTA FUNCTION 
DISTRIBUTION OVER x IS A NECESSARY 
CONDITION FOR MAXIMAL INFORMATION 
OVER W(h) 

The variable x referred to at the end of  Section 1.3 is an element of  a 
partition on a phase space. We assume that that partition is fine enough so 
that we can approximate a distribution over x with the same distribution 
over the phase space partitioned by x. We will prove that information is 
maximized for the case where x is S(tl) if the distribution over x is a delta 
function. The proof  when x is W(to) is trivial; if both S and W are known 
exactly at to, then independent of  any issues of maximizing entropy, we can 
evolve the combined system S x IV deterministically from to to tl. Therefore 
this distribution over W(to) gives us maximal information about IV(tl) (we 
know W(fi) exactly, in fact). 

We start with a provided distribution over x = (Fs),, .  Given this distri- 
bution, we must find the maximal entropy over (Fs• w)t, subject to the 
constraint that P,o(S) is a delta function and subject to the constraint of  the 
provided distribution over x. The goal is to choose a distribution over x 
such that the resultant distribution over (Fs• w)t, has maximal information. 
(More precisely, we are interested in maximal information over the projec- 
tion space (Fw),  .) In other words, we must find the distribution over x such 
that {the maximum possible associated entropy} is minimized. 

As was pointed out in the text, the first constraint (P,o(S) is a delta 
function) is simply a constraint on the allowed region in (Fs• w),, ; it is a 
boundary, nothing more. Given the second constraint (the provided distribu- 
tion over x), the process of extremizing the entropy becomes the following: 
extremize an integral of the form S p(FA • s) ln[p(FA • .)]  dl-'A • 8, subject to 
a constraint of  the form S p(FA • =P(B) ,  where the integrals are 
only over the allowed regions of  the associated spaces. For  simplicity we 
will rewrite this as extremizing Sp(a,b) ln[p(a,b)]dadb subject to 
S p(a, b)da = P(b). Here P(b) is the externally provided distribution over 
F , ,  the phase space associated with x. Note that the normalization 
constraint S p(a, b) da db = 1 is automatically taken care of  by the provided 
distribution P(b), since S p(a, b) da db = ~ P(b) db, and we assume that the 
provided P(b) obeys ~ P(b) db = 1. For  simplicity, from now on we treat A 
and B as though both were R~; similar arguments work for higher dimen- 
sional spaces. 

Using Lagrange multipliers in the usual way, we conclude that for a 
given B-space value b and an associated allowed range in A space, over that 
entire allowed range in A space, p(a, b) is constant and independent of  the 
A-space coordinate a. In fact, p(a,b)=P(b)/[cr(b)[, where tr(b) is the 
allowed range in A corresponding to B value b, and [tr(b)[ is the size of  that 
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interval, o'(b) is determined by the boundary of the allowed region in 
(Fs• w),,, which in turn is set by the first constraint that S(to) is a delta 
function. For simplicity, we are assuming that the allowed region in 
(Fs• w),, is simple (and therefore simply connected) and that its border is 
nondifferentiable at, at most a finite number of points. (Note that this does 
not mean we are assuming that the support of p(a, b) is a simply connected 
set; the topological structure of  the support of p(a, b) depends on the topo- 
logical structure of the support of P(b).) 

The probability distribution over A space is given by the formula 

P(a) = p(a, b) db = P(b)/cr(b) db 
L(a) ~ L(a) 

L(a) is the lowest b value in the allowed region for A-space value a, and 
H(a) is the highest such value. The only function under our control is P(b). 
We want to choose the P(b) which maximizes ~ P(a) ln[P(a)] da (subject to 
the constraint that P(b) is normalized). This P(b) gives the distribution 
across x which maximizes our information about a, i.e., which maximizes 
our information about W(tl). We will show that given any distribution P(a) 
corresponding to a non-delta function P(b), there is another distribution 
over A space whose support is a subset of the support of P(a), which corre- 
sponds to a delta function P(b), and whose information over A space is 
higher than that of the original P(a). In this way we will show that one 
should always use a delta function P(x). 

IfP(b) is a delta function, ~(b - fl), then p(a, b) has as support only a line 
segment going in (A, B) space from (the bottom of o-(fl), fl) to (the top of 
o-(fl), fl). The value of p(a, b) is constant across that line segment: p(a, b) = 
step(a, o-(fl)) • 6(b-fl) ,  where step(a, o-(b))- { 1/Io-(b)[ if a is in the region 
tT(b), 0 otherwise}. Therefore for this case P(a) is zero everywhere except 
across an interval where it is constant; P(a) = step(a, o-(fl)). For this case the 
derivative of P(a) is 0 everywhere except at the two ends of that interval. 

For simplicity, we will now assume that the support of P(a) is not a 
disconnected set. (Arguments similar to the following hold for the case where 
the support of P(a) is disconnected.) We will prove that a delta function 
P(b) gives maximal information first for the case where P(a) is constant 
across its support, and then for the case where it is not. 

If P(a) is constant across its support but P(b) is not a delta function, 
then we can consider replacing P(b) with a new delta function P(b) whose 
support is a subset of the support of the original P(b). The support of the 
resulting new P(a) will be a subset o f  the support of the original P(a). 
Moreover, since the new P(b) is a delta function, the new P(a) will be 
constant across its support, just like the original P(a). As a result, normaliza- 
tion tells us that the new P(a) is everywhere greater than or equal to the 
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original P(a). This means that the entropy of the new P(a) is less than the 
entropy of the original P(a). This completes the proof that if P(a) is constant 
across its support but P(b) is not a delta function, then replacing P(b) With 
a delta function decrease the entropy of P(a). 

Now consider the case where P(a) is not constant across its support. 
(In general, allowing P(a) to be nonconstant across its support means that 
p(a, b) need not be constant across its support, although we do know that 
for afixed b, p(a, b) is constant everywhere it is not zero.) Define a'---arg- 
max(P(a)). Define b' as any one of the points b~B with minimal value Icr(b)l 
such that o-(b) encloses the A-space value a'. Divide up the entire B axis into 
intervals of width 2e, where c is arbitrarily small, so we can assume that 
P(b) is constant over any such interval. Now raise P(b) over the interval 
b~[b'-~,  b '+e ]  by a constant ratio k', while uniformly diminishing all 
P(bC[b'- ~, b'+ e]) by a constant ratio k, where k is chosen to maintain the 
normalization of P(b). This will be referred to as a "delta-ing procedure." 

Lemma B. 1. P(a') is raised by the delta-ing procedure. 

Proof First assume that b' is in fact the only b~B such that or(b) 
encloses the A-space value a', regardless of the size of Io(b)l. Then L(a') = 
b ' - e ,  H(a ' )=  b '+  e. Since the delta-ing procedure raises p(a, b) over this 
range [L(a'), H(a')], it raises P(a'), i.e., it raises the maximum of P(a). If  
there are b~B besides b' whose or(b) enclose the A-space value a', then 
either L(a') < b' - ~, and/or  H(a') > b' + ~. We now must prove that for this 
scenario as well the delta-ing procedure has raised the maximum of P(a). 
Let N be the number of  width-2E B-space intervals, aside from the interval 
[b' - e, b' + c], whose corresponding allowed interval in A space enclose the 
A-space value a'. Delineate the N such P(b) values as P(bi), 1 <i<N. De- 
lineate by P(bj), I < j < M ,  M>__N, the set of all P(b) (other than b') which 
do not equal 0. We have increased P(b') by the ratio k', and we have 
decreased all the P(bj) by the ratio k. Therefore normalization says that 
k'P(b') = l - k  ~j P(bj). Now it is always true that 

P(a') = P(b')/Icr(b')l + ~ { P(b,)/Icr(b,)t} 
i 

so the new 

P(a') = k'P(b')/[~r(b') + k ~ {P(b~)/Icr(bi)[} 
i 

.I 

J 
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The old 

J 

If  we subtract the old P(a') from the new one, we get 

By definition ofb' ,  Icr(b')l < Icr(bi)l for all N of the bt. Therefore, the quantity 
inside the brackets is negative. Furthermore, k < 1. Therefore the change in 
P(a') is positive, proving the proposition. QED. 

If we keep iterating the delta-ing procedure, we get a P(b) arbitrarily 
close to a delta function. This means that the resultant P(a) is constant over 
its support, and by (B. 1), we know that the magnitude of  this new P(a) over 
its support is greater than the maximum magnitude of the original P(a). To 
finish the proof that P(b) should be a delta function, we only have to show 
that the growth of the maximum of P(a) means that the entropy of the new 
P(a) is less than the entropy of the original P(a). To do this, we will find a 
lower bound on the entropy of the original P(a), given that the maximum 
of that P(a) is p -  P(a'), and then show that this lower bound is greater than 
the entropy of the new P(a). 

Lemma B.2. The minimal possible entropy of P(a) subject to the con- 
straint that P(a)<_p YaeA occurs when P(a)= either p or 0 for all a. 

Proof. Imagine that P(a) has the value p'~{0,p} in some arbitrarily 
small interval [x, y]. Then without violating normalization of P(a), we can 
modify P(a) so that it has the value p over the interval [x, x+ (y-x)p'/p), 
and is 0 over [x + (y-x)p'/p, y]. The change in entropy accompanying this 
modification is 

- [ { ( y  -x)p'/p}p In[p] - {y - x}p' ln[p']] = - [ { ( y -  x)p'} {In[p] - ln [p ' ]  } ] 

Since p >p',  this quantity is negative. Therefore the original P(a) did not 
have minimal entropy. QED. 

(B.2) implies that a lower bound on the entropy of the original P(a) 
is -zp In[p], where z is the volume of the support of the new P(a) (i.e., 
1/p); the lower bound = -In[p].  Similarly, the P(a) corresponding to a delta 
function P(b) is constant over its support, and therefore has entropy -In[p"] 
(p" is the maximum of the new P(a) corresponding to the delta function 
P(b)). We know that p">p, so the entropy of P(a) corresponding to the 
delta function P(b) is less than the entropy of the original P(a) corresponding 
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to a non-delta function P(b). This proves that P(x) should be a delta func- 
tion to get maximal information about W(tl). 
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